Splice Junction Identification using Long Short-Term Memory Neural Networks

2021 ◽  
Vol 22 ◽  
Author(s):  
Kevin Regan ◽  
Abolfazl Saghafi ◽  
Zhijun Li

Background: Splice junctions are the key to going from pre-messenger RNA to mature messenger RNA in many multi-exon genes due to alternative splicing. Since the percentage of multi-exon genes that undergo alternative splicing is very high, identifying splice junctions is an attractive research topic with important implications. Objective: The aim is to develop a deep learning model capable of identifying splice junctions in RNA sequences using 13,666 unique sequences of primate RNA. Method: A Long Short-Term Memory (LSTM) Neural Network model is developed that classifies a given sequence as EI (Exon-Intron splice), IE (Intron-Exon splice), or N (No splice). The model is trained with groups of trinucleotides and its performance is tested using validation and test data to prevent bias. Results: Model performance was measured using accuracy and f-score in test data. The finalized model achieved an average accuracy of 91.34% with an average f-score of 91.36% over 50 runs. Conclusion: Comparisons show a highly competitive model to recent Convolutional Neural Network structures. The proposed LSTM model achieves the highest accuracy and f-score among published alternative LSTM structures.

2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document