Diversified Synthetic Pathway of 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules

Author(s):  
Shubham Khot ◽  
Pratibha B. Auti ◽  
Samrat A. Khedkar

: The current review discusses the different synthetic pathways for one of the most important and interesting heterocyclic ring systems 1,4-dihydropyridine. This cyclic system depicts diverse pharmacological action at several receptors, channels, and enzymes. Dihydropyridine moiety plays an important role in several calcium-channel blockers. Moreover, it has been exploited for the treatment of a variety of cardiovascular diseases due to its potential antihypertensive, anti-angina, vasodilator, and cardiac depressant activities. Furthermore, it also shows antibacterial, anticancer, antileishmanial, anticoagulant, anticonvulsant, anti-tubercular, antioxidant, antiulcer, and neuroprotective properties. Several reports have demonstrated dihydropyridine derivatives as a potentiator of cystic fibrosis transmembrane conductance regulator protein, potent antimalarial agent and HIV-1 protease inhibitor. Herein, we have briefly reviewed different novel chemistry and synthesis of 1,4-dihydropyridine.

2015 ◽  
Vol 43 (5) ◽  
pp. 894-900 ◽  
Author(s):  
Naomi L. Pollock ◽  
Tracy L. Rimington ◽  
Robert C. Ford

As an ion channel, the cystic fibrosis transmembrane conductance regulator (CFTR) protein occupies a unique niche within the ABC family. Orthologues of CFTR are extant throughout the animal kingdom from sharks to platypods to sheep, where the osmoregulatory function of the protein has been applied to differing lifestyles and diverse organ systems. In humans, loss-of-function mutations to CFTR cause the disease cystic fibrosis, which is a significant health burden in populations of white European descent. Orthologue screening has proved fruitful in the pursuit of high-resolution structural data for several membrane proteins, and we have applied some of the princples developed in previous studies to the expression and purification of CFTR. We have overexpressed this protein, along with evolutionarily diverse orthologues, in Saccharomyces cerevisiae and developed a purification to isolate it in quantities sufficient for structural and functional studies.


2014 ◽  
Vol 62 (11) ◽  
pp. 791-801 ◽  
Author(s):  
Pascale Marcorelles ◽  
Gaëlle Friocourt ◽  
Arnaud Uguen ◽  
Françoise Ledé ◽  
Claude Férec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document