Transplantation of BDNF Gene Recombinant Mesenchymal Stem Cel ls and Adhesive Peptide-modified Hydrogel Scaffold for Spinal Cord Repa ir

2018 ◽  
Vol 18 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Li-Ming Li ◽  
Ling-Ling Huang ◽  
Xin-Chi Jiang ◽  
Jia-Chen Chen ◽  
Hong-Wei OuYang ◽  
...  
Dose-Response ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 155932582091093
Author(s):  
YongLei Li ◽  
Hongchen Wang ◽  
Xiaofang Ding ◽  
Jiancheng Shen ◽  
Haitao Zhou ◽  
...  

Objective: To assess the effect as well as mechanism of bone marrow mesenchymal stem cells (BMSCs) modified by the human brain–derived neurotrophic factor gene combined with erythropoietin (EPO) in the treatment of acute spinal cord injury (SCI) in rats. Methods: The Brain-derived neurotrophic factor (BDNF) gene was transected by a virus vector. Rats with SCI were randomly split into following groups: The normal saline (NS) group, the EPO group, The Basso, Beattie, and Bresnahan scores, messenger RNA BDNF expression, and apoptosis rates were compared between the 4 groups at 1, 3, 7, 14, and 21 days after SCI. Results: At 7, 14, and 21 days after operation, the expression of the BDNF gene in the other 3 groups was higher than that of the NS group, and the difference was statistically significant ( P < .05). The apoptosis rate in the combined group was less than that of NS, EPO, and BDNF/BMSC groups, and the differences were statistically significant ( P < .05). Conclusion: Brain-derived neurotrophic factor gene-modified BMSC transplantation combined with EPO can promote the repair of nerve function after SCI in rats.


Author(s):  
Xinhao Zhao ◽  
Huiru Wang ◽  
Yunlong Zou ◽  
Weiwei Xue ◽  
Yang Zhuang ◽  
...  

Abstract Severe microenvironmental changes after spinal cord injury (SCI) present serious challenges in neural regeneration and tissue repair. Gelatin (GL)- and hyaluronic acid (HA)-based hydrogels are attractive scaffolds because they are major components of the extracellular matrix and can provide a favorable adjustable microenvironment for neurogenesis and motor function recovery. In this study, three-dimensional hybrid GL/HA hydrogel scaffolds were prepared and optimized. The hybrid hydrogels could undergo in-situ gelation and fit the defects perfectly via visible light- induced crosslinking in the complete SCI rats. We found that the transplantation of the hybrid hydrogel scaffold significantly reduced the inflammatory responses and suppressed glial scar formation in an HA concentration-dependent manner. Moreover, the hybrid hydrogel with GL/HA ratios less than 8/2 effectively promoted endogenous neural stem cell migration and neurogenesis, as well as improved neuron maturation and axonal regeneration. The results showed locomotor function improved 60 days after transplantation, thus suggesting that GL/HA hydrogels can be considered as a promising scaffold for complete SCI repair.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lan Huong Nguyen ◽  
Mingyong Gao ◽  
Junquan Lin ◽  
Wutian Wu ◽  
Jun Wang ◽  
...  

Abstract Spinal cord injuries (SCI) often lead to persistent neurological dysfunction due to failure in axon regeneration. Unfortunately, currently established treatments, such as direct drug administration, do not effectively treat SCI due to rapid drug clearance from our bodies. Here, we introduce a three-dimensional aligned nanofibers-hydrogel scaffold as a bio-functionalized platform to provide sustained non-viral delivery of proteins and nucleic acid therapeutics (small non-coding RNAs), along with synergistic contact guidance for nerve injury treatment. A hemi-incision model at cervical level 5 in the rat spinal cord was chosen to evaluate the efficacy of this scaffold design. Specifically, aligned axon regeneration was observed as early as one week post-injury. In addition, no excessive inflammatory response and scar tissue formation was triggered. Taken together, our results demonstrate the potential of our scaffold for neural tissue engineering applications.


2017 ◽  
Vol 9 (4) ◽  
pp. 3330-3342 ◽  
Author(s):  
Li-Ming Li ◽  
Min Han ◽  
Xin-Chi Jiang ◽  
Xian-Zhen Yin ◽  
Fu Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document