Biological Evaluation and Molecular Docking Studies of Synthesized 5-Substituted-2-chlorophenyl-4-chloro Derivatives Bearing Pyridazinone Moiety

2020 ◽  
Vol 17 (3) ◽  
pp. 170-183
Author(s):  
Minaxi Saini ◽  
Dinesh Kumar Mehta ◽  
Rina Das

Chemical modification of pyridazinone may lead to a potent therapeutic agent. In this study, biological properties of pyridazinone derivatives were evaluated by assessing their antimicrobial and in-vitro antioxidant activities. The reaction of a mucochloric acid and 3-chloro-phenylhydrazine hydrochloride led to the formation of 5-aryl-4-chloro-2-(3-chloro-phenyl)-2H-pyridazin-3-one derivatives 2(a-j). The target compounds were synthesized using nucleophilic substitution reaction. In-silico molecular docking studies of the synthesized compounds were carried out with the help of V-Life Science MDS 4.6 software using GRIP batch docking method to find out which derivative had a better docking. The newly synthesized compounds were characterized by FTIR, 1HNMR, 13C-NMR, MS, and elemental analysis. Antimicrobial and in-vitro antioxidant activity study of the novel synthesized compounds were screened. Compounds 2f and 2g showed good antimicrobial having an MIC 12.5 μg/mL against Staphylococcus aureus and Candida albicans and in-vitro antioxidant activities having an IC50 50.84. The experimental results were further supported by molecular docking analysis with better interaction patterns.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Hanif ◽  
Khurram Shoaib ◽  
Muhammad Saleem ◽  
Nasim Hasan Rama ◽  
Sumera Zaib ◽  
...  

A series of eighteen 1,3,4-oxadiazole derivatives have been synthesized by treating aromatic acid hydrazides with carbon disulfide in ethanolic potassium hydroxide yielding potassium salts of 1,3,4-oxadiazoles. Upon neutralization with 1 N hydrochloric acid yielded crude crystals of 1,3,4-oxadiazoles, which were purified by recrystallization in boiling methanol. The synthesized 1,3,4-oxadiazoles derivatives were evaluated in vitro for their urease inhibitory activities, most of the investigated compounds were potent inhibitors of Jack bean urease. The molecular docking studies were performed by docking them into the crystal structure of Jack bean urease to observe the mode of interaction of synthesized compounds. The synthesized compounds were also tested for antibacterial and antioxidant activities and some derivatives exhibited very promising results.


2020 ◽  
Author(s):  
Mohsinul Mulk Bacha ◽  
Humaira Nadeem ◽  
Shafiq Ur Rehman ◽  
Sadia Sarwar ◽  
Aqeel Imran ◽  
...  

Abstract In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is considered to be important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a-g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a-g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2.


2019 ◽  
Vol 15 (7) ◽  
pp. 790-800 ◽  
Author(s):  
Rakesh Kumar ◽  
Ritika Sharma ◽  
Inder Kumar ◽  
Pooja Upadhyay ◽  
Ankit Kumar Dhiman ◽  
...  

Background: Malaria remains a common life-threatening infectious disease across the globe due to the development of resistance by Plasmodium parasite against most antimalarial drugs. The situation demands new and effective drug candidates against Plasmodium. Objectives: The objective of this study is to design, synthesize and test novel quinoline based molecules against the malaria parasite. Methods: C2 and C8 modified quinoline analogs obtained via C-H bond functionalization approach were synthesized and evaluated for inhibition of growth of P. falciparum grown in human red blood cells using SYBR Green microtiter plate based screening. Computational molecular docking studies were carried out with top fourteen molecules using Autodoc software. Results: The biological evaluation results revealed good activity of quinoline-8-acrylate 3f (IC50 14.2 µM), and the 2-quinoline-α-hydroxypropionates 4b (IC50 6.5 µM), 4j (IC50 5.5 µM) and 4g (IC50 9.5 µM), against chloroquine sensitive Pf3D7 strain. Top fourteen molecules were screened also against chloroquine resistant Pf INDO strain and the observed resistant indices were found to lie between 1 and 7.58. Computational molecular docking studies indicated a unique mode of binding of these quinolines to Falcipain-2 and heme moiety, indicating these to be the probable targets of their antiplasmodial action. Conclusion: An important finding of our work is the fact that unlike Chloroquine which shows a resistance Index of 15, the resistance indices for the most promising molecules studied by us were about one indicating equal potency against drug sensitive and resistant strains of the malaria parasite.


Sign in / Sign up

Export Citation Format

Share Document