Evaluation of In vitro Anticancer, Antimicrobial and Antioxidant activities of new Cu(II) complexes derived from 4(3H)-quinazolinone: Synthesis, crystal structure and molecular docking studies

2021 ◽  
pp. 131984
Author(s):  
Panchsheela Ubale ◽  
Santosh Mokale ◽  
Shweta More ◽  
Shailesh Waghamare ◽  
Vikramsinh More ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Muhammad Hanif ◽  
Khurram Shoaib ◽  
Muhammad Saleem ◽  
Nasim Hasan Rama ◽  
Sumera Zaib ◽  
...  

A series of eighteen 1,3,4-oxadiazole derivatives have been synthesized by treating aromatic acid hydrazides with carbon disulfide in ethanolic potassium hydroxide yielding potassium salts of 1,3,4-oxadiazoles. Upon neutralization with 1 N hydrochloric acid yielded crude crystals of 1,3,4-oxadiazoles, which were purified by recrystallization in boiling methanol. The synthesized 1,3,4-oxadiazoles derivatives were evaluated in vitro for their urease inhibitory activities, most of the investigated compounds were potent inhibitors of Jack bean urease. The molecular docking studies were performed by docking them into the crystal structure of Jack bean urease to observe the mode of interaction of synthesized compounds. The synthesized compounds were also tested for antibacterial and antioxidant activities and some derivatives exhibited very promising results.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49404-49422 ◽  
Author(s):  
Yueqin Li ◽  
Zhiwei Yang ◽  
Minya Zhou ◽  
Yun Li

Cytotoxic nickel and cobalt complexes containing asymmetrical aroylhydrazone were synthesized and their interactions with HS–DNA and BSA protein were investigated, which was supported by molecular docking studies.


2020 ◽  
Vol 17 (3) ◽  
pp. 170-183
Author(s):  
Minaxi Saini ◽  
Dinesh Kumar Mehta ◽  
Rina Das

Chemical modification of pyridazinone may lead to a potent therapeutic agent. In this study, biological properties of pyridazinone derivatives were evaluated by assessing their antimicrobial and in-vitro antioxidant activities. The reaction of a mucochloric acid and 3-chloro-phenylhydrazine hydrochloride led to the formation of 5-aryl-4-chloro-2-(3-chloro-phenyl)-2H-pyridazin-3-one derivatives 2(a-j). The target compounds were synthesized using nucleophilic substitution reaction. In-silico molecular docking studies of the synthesized compounds were carried out with the help of V-Life Science MDS 4.6 software using GRIP batch docking method to find out which derivative had a better docking. The newly synthesized compounds were characterized by FTIR, 1HNMR, 13C-NMR, MS, and elemental analysis. Antimicrobial and in-vitro antioxidant activity study of the novel synthesized compounds were screened. Compounds 2f and 2g showed good antimicrobial having an MIC 12.5 μg/mL against Staphylococcus aureus and Candida albicans and in-vitro antioxidant activities having an IC50 50.84. The experimental results were further supported by molecular docking analysis with better interaction patterns.


Sign in / Sign up

Export Citation Format

Share Document