Design, Synthesis and Pharmacological Evaluation of Novel Antiinflammatory and Analgesic O-Benzyloxime Compounds Derived From Natural Eugenol

2019 ◽  
Vol 16 (10) ◽  
pp. 1157-1166
Author(s):  
Rodrigo César da Silva ◽  
Fabiano Veiga ◽  
Fabiana Cardoso Vilela ◽  
André Victor Pereira ◽  
Thayssa Tavares da Silva Cunha ◽  
...  

Background: : A new series of O-benzyloximes derived from eugenol was synthesized and was evaluated for its antinociceptive and anti-inflammatory properties. Methods: : The target compounds were obtained in good global 25-28% yields over 6 steps, which led us to identify compounds (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-(4- (methylthio)benzyloxime (8b), (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- bromobenzyloxime (8d) and (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- (methylsulfonyl)benzyloxime (8f) as promising bioactive prototypes. Results:: These compounds have significant analgesic and anti-inflammatory effects, as evidenced by formalin-induced mice paw edema and carrageenan-induced mice paw edema tests. In the formalin test, compounds 8b and 8f evidenced both anti-inflammatory and direct analgesic activities and in the carrageenan-induced paw edema, with compounds 8c, 8d, and 8f showing the best inhibitory effects, exceeding the standard drugs indomethacin and celecoxib. Conclusion: : Molecular docking studies have provided additional evidence that the pharmacological profile of these compounds may be related to inhibition of COX enzymes, with slight preference for COX-1. These results led us to identify the new O-benzyloxime ethers 8b, 8d and 8f as orally bioactive prototypes, with a novel structural pattern capable of being explored in further studies aiming at their optimization and development as drug candidates.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ravi Jarapula ◽  
Kiran Gangarapu ◽  
Sarangapani Manda ◽  
Sriram Rekulapally

A novel synthesis of 2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide derivatives was synthesized by the condensation of 2-hydroxybenzohydrazide with substituted isatins. The synthesized compounds were characterized by FT-IR, 1H-NMR, and mass spectral data. Further, the compounds were screened for in vivo anti-inflammatory activity by carrageenan induced paw edema method. The tested compounds have shown mild-to-moderate anti-inflammatory activity. The compounds VIIc and VIId exhibited 65% and 63% of paw edema reduction, respectively. The molecular docking studies were also carried out into the active site of COX-1 and COX-2 enzymes (PDB ID: 3N8Y, 3LN1, resp.) using VLife MDS 4.3. The compounds VIIc, VIId, and VIIf exhibited good docking scores of −57.27, −62.02, and −58.18 onto the active site of COX-2 and least dock scores of −8.03, −9.17, and −8.94 on COX-1 enzymes and were comparable with standard COX-2 inhibitor celecoxib. A significant correlation was observed between the in silico and the in vivo studies. The anti-inflammatory and docking results highlight the fact that the synthesized compounds VIIc, VIId, and VIIf could be considered as possible hit as therapeutic agents.


2016 ◽  
Vol 121 ◽  
pp. 410-421 ◽  
Author(s):  
Alaa A.-M. Abdel-Aziz ◽  
Laila A. Abou-Zeid ◽  
Kamal Eldin H. ElTahir ◽  
Rezk R. Ayyad ◽  
Magda A.-A. El-Sayed ◽  
...  

Author(s):  
Phebe Hendra ◽  
Fenty . ◽  
Putu Ririn Andreani ◽  
Bernadetha Maria Estika Pangestuti ◽  
Jeffry Julianus

Objective: To investigate the antihyperlipidemic, anti-inflammatory and analgesic properties of of E. longifolia root extract in animal models.Methods: In this study, glucose-fructose enriched diet-induced hyperlipidemia, carrageenan-induced paw edema and acetic acid-induced writhing were used to evaluate the anti-hypertriglyceridemia, anti-inflammatory and analgesic activities, respectively. At the end of the experiment of glucose-fructose enriched diet-induced hyperlipidemia, blood samples were collected and estimation of blood lipids were carried out. Edema thickness was measured using digital caliper at 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and 360 min after carrageenan injection. The number of abdominal writhing for each mouse was observed and counted during a period of 1 h post injection of acetic acid.Results: E. longifolia root extract demonstrated a significant reduction of triglyceride levels (p<0.05) compared with the control group in glucose-fructose enrich diet in rats. In anti-inflammatory test, the extract significantly inhibited the carrageenan induced paw edema formation (p<0.05). The extract also significantly decreased the number of writhing in acetic acid-induced mice (p<0.05).Conclusion: E. longifolia root extract shown a significant anti-hypertriglyceridemia, anti-inflammatory and analgesic activities. Further studies are needed to determine mechanisms for its acitivities of E. longifolia root extract.


Author(s):  
Mustafa H. Ali Alsafi ◽  
Muthanna S. Farhan

Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetylchloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the titled compounds has been established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05) . On the other hand compound IVc exhibited lower anti-inflammatory effect.


Sign in / Sign up

Export Citation Format

Share Document