profile design
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 65)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Eduardo Corral ◽  
Jesús Meneses ◽  
M. J. Gómez García ◽  
Cristina Castejón ◽  
Juan Carlos García-Prada

AbstractThe wheel re-profiling is an important part of railway wheelset maintenance. Researchers and railway operators have been very concerned about how to minimize the loss of time during wheel re-profiling without decreasing safety. Avoiding wheelset disassembly means considerable time savings, while reducing wheel damage during operation. Underfloor wheel lathes are the most appropriate tool to achieve this double objective, and therefore the most used nowadays. Multi-cut tool lathes have the disadvantage of being extremely expensive. On the other hand, with single tool lathes, re-profiling is not smooth or safe enough when current convex profile support rollers are used. It is well known by the companies that during reprofiling the wheel suffers impacts/damaged. In this article, a methodology to optimize the profile of the support rollers used in underfloor single tool lathes for railway wheel re-profiling is proposed. This novel profile design will minimize damage and increase the safety of such lathes, since it proposes a greater smoothness in the process. Simulations of re-profiling process have been carried out by the finite element method showing that the designed roller profile reduces drastically the impact/damage during the operation. The impact generated between the re-profiling wheel and the rollers is avoided. Profile-optimized support rollers have been used in a real underfloor wheel lathe, showing good results.


2021 ◽  
Vol 14 (4) ◽  
pp. 322-334
Author(s):  
Jiawei Lin ◽  
Lixin Zhang ◽  
Liang Dong ◽  
Houlin Liu ◽  
Cui Dai

2021 ◽  
Author(s):  
Xiaoyu Che ◽  
Rui Gao ◽  
Yefeng Yu ◽  
weijian liu ◽  
sun yifeng ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3157
Author(s):  
Binxu Wang ◽  
Xiaoqing Luo ◽  
Yalin Lu ◽  
Guangyuan Li

Dynamic phase modulation is vital for tuneable focusing, beaming, polarisation conversion and holography. However, it remains challenging to achieve full 360° dynamic phase modulation while maintaining high reflectance or transmittance based on metamaterials or metasurfaces in the terahertz regime. Here, we propose a doubly resonant graphene–metal hybrid metasurface to address this challenge. Simulation results show that by varying the graphene Fermi energy, the proposed metasurface with two shifting resonances is capable of providing dynamic phase modulation covering a range of 361° while maintaining relatively high reflectance above 20% at 1.05 THz. Based on the phase profile design, dynamically tuneable beam steering and focusing were numerically demonstrated. We expect that this work will advance the engineering of graphene metasurfaces for the dynamic manipulation of terahertz waves.


Author(s):  
Binxu Wang ◽  
Xiaoqing Luo ◽  
Yalin Lu ◽  
Guangyuan Li

Dynamic phase modulation is vital for tunable focusing, beaming, polarization conversion and holography. However, it remains challenging to achieve full 360∘ dynamic phase modulation while maintaining high reflectance or transmittance based on metamaterials or metasurfaces in the terahertz regime. Here we propose a doubly resonant graphene-metal hybrid metasurface to address this challenge. Simulation results show that by varying the graphene Fermi energy, the proposed metasurface with two shifting resonances is capable to provide dynamic phase modulation covering a range of 361∘ while maintaining relatively high reflectance above 20% at 1.05 THz. Based on the phase profile design, dynamically tunable beam steering and focusing are numerically demonstrated. We expect this work will advance the engineering of graphene metasurfaces for the dynamic manipulation of terahertz waves.


2021 ◽  
Vol 1180 (1) ◽  
pp. 012004
Author(s):  
Sumit Patil ◽  
Nikola Stosic ◽  
Ahmed Kovacevic ◽  
Ian Smith ◽  
Neeraj Asati

Author(s):  
Jaeha Yang ◽  
Junil Park ◽  
Jihun Kim ◽  
Sungjin Park ◽  
Giuk Lee

Abstract Background Human beings can enhance their distance running performance with the help of assistive devices. Although several such devices are available, they are heavy and bulky, which limits their use in everyday activities. In this study, we developed a lightweight running assistive device with a low-profile design. The device applies a flexion moment to the hip according to the hip extension within a specific range of motion to assist running. Methods A passive exosuit was fabricated using textile materials and elastic bands. The deformation of the suit was measured and compensated for in the design. The fabricated suit was tested on eight participants (age: 24.4 ± 3.8 y; height: 1.72 ± 0.05 m; weight: 74.5 ± 6.1 kg) who were instructed to run on a treadmill at a speed of 2.5 m/s. Through indirect calorimetry, the metabolic rate was measured for the no-suit condition and three band conditions. Variations in the spatiotemporal parameters were measured using a motion capture system and force-sensing resistors (FSRs). Results When using the fabricated device, seven out of the eight participants exhibited a reduced metabolic rate in at least one of the three band conditions. An average reduction of − 4.7 ± 1.4% (mean ± standard error of the mean (s.e.m.), two-sided paired t-test, p = 0.017) was achieved when using the best-fitting bands compared to the average of the two no-suit conditions. No statistically significant changes were observed in the spatiotemporal parameters, except for the stance duration in the medium assistance force condition. Conclusions The proposed passive exosuit, which has a low weight of 609 g and small extrusion of 2.5 cm from the body in standing posture, can reduce the metabolic rate during running. The proposed device can potentially be used every day owing to its low-profile design and low weight, thereby overcoming the limitations of existing portable devices targeting the hip joints.


2021 ◽  
Vol 1995 (1) ◽  
pp. 012048
Author(s):  
Fuchuan Lan ◽  
Jiani Liu ◽  
Fuxi Zhang ◽  
Shiming Wang ◽  
Rong Chi

Sign in / Sign up

Export Citation Format

Share Document