Synthesis of New Bis-pyrazolines Endowed with Potent Antifungal Activity against Candida albicans and Aspergillus niger

Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Ahmet Özdemir

Background: Due to the increasing number of cases of invasive fungal infections (IFIs), there is an urgent need to identify potent antifungal agents capable of combating IFIs. Pyrazolines are one such class of therapeutically active agents that could be considered to fulfil this need. Objective: In this context, this paper aims to identify two new series of bis-pyrazolines endowed with potent antifungal activity against Candida albicans and Aspergillus niger. Methods: Two new series of bis-pyrazolines (4a-i, 5a-e) were synthesized through an efficient and and versatile synthetic procedure. The compounds were screened for their antifungal effects on C. albicans and A. niger using a broth microdilution method. Their cytotoxic effects on NIH/3T3 mouse embryonic fibroblast cell line were determined using MTT assay. Molecular docking studies were performed in the active site of lanosterol 14α-demethylase (CYP51) to shed light on their antifungal effects using Schrödinger’s Maestro molecular modeling package. Results And Discussion: 5,5'-(1,4-Phenylene)bis[1-(2-(5-phenyl-1,3,4-oxadiazol-2-yl)thio)acetyl)-3-(2-thienyl)-4,5- dihydro-1H-pyrazole] (4a) and 5,5'-(1,4-phenylene)bis[1-(2-(4-(2-hydroxyethyl)-1-piperazinylthiocarbamoyl)thio)acetyl)-3- (2-thienyl)-4,5-dihydro-1H-pyrazole] (5a) were found as the most promising antifungal agents in this series. Compounds 4a and 5a showed pronounced antifungal activity against C. albicans (MIC= 0.016 mg/mL) and A. niger (MIC= 0.008 mg/mL). Based on MTT assay, their antifungal effects were selective (IC50 > 0.500 mg/mL for NIH/3T3 cell line). Molecular docking studies suggested that compounds 5a-e might show their anticandidal effects via CYP51 inhibition in regard to their stronger interactions in the active site of CYP51. Conclusion: Compounds 4a and 5a stand out as potential antifungal agents for the management of IFIs caused by C. albicans and A. niger.

2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526
Author(s):  
Smaranda Oniga ◽  
Catalin Araniciu ◽  
Gabriel Marc ◽  
Livia Uncu ◽  
Mariana Palage ◽  
...  

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Nafiz Öncü Can ◽  
Ulviye Acar Çevik ◽  
Begüm Nurpelin Sağlık ◽  
Serkan Levent ◽  
Büşra Korkut ◽  
...  

Due to anticandidal importance of azole compounds, a new series of benzimidazole-triazole derivatives(5a–5s)were designed and synthesized as ergosterol inhibitors. The chemical structures of the target compounds were characterized by spectroscopic methods. The final compounds were screened for antifungal activity againstCandida glabrata(ATCC 90030),Candida krusei(ATCC 6258),Candida parapsilosis(ATCC 22019), andCandida albicans(ATCC 24433). Compounds5iand5sexhibited significant inhibitory activity againstCandidastrains with MIC50values ranging from 0.78 to 1.56 μg/mL. Cytotoxicity results revealed that IC50values of compounds5iand5sagainst NIH/3T3 are significantly higher than their MIC50values. Effect of the compounds5iand5sagainst ergosterol biosynthesis was determined by LC-MS-MS analysis. Both compounds caused a significant decrease in the ergosterol level. The molecular docking studies were performed to investigate the interaction modes between the compounds and active site of lanosterol 14-α-demethylase (CYP51), which is as a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for final compounds.


2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h. Keywords: Thiazolyl-methylen-1,3,4-oxadiazolines, Candida albicans, lanosterol 14a-demethylase


2020 ◽  
Vol 6 (4) ◽  
pp. 237
Author(s):  
Rakia Abd Alhameed ◽  
Zainab Almarhoon ◽  
Essam N. Sholkamy ◽  
Salman Ali Khan ◽  
Zaheer Ul-Haq ◽  
...  

A novel series of 4,6-disubstituted s-triazin-2-yl amino acid derivatives was prepared and characterized. Most of them showed antifungal activity against Candida albicans compared to clotrimazole (standard drug). Compounds bearing aniline derivatives, piperidine and glycine on the triazine core showed the highest inhibition zones at concentrations of 50, 100, 200, and 300 μg per disc. In addition, docking studies revealed that all the compounds accommodated well in the active site residues of N-myristoltransferase (NMT) and exhibited complementarity, which explains the observed antifungal activity. Interestingly, none of these compounds showed antibacterial activity.


2018 ◽  
Vol 34 (18) ◽  
pp. 2642-2646 ◽  
Author(s):  
Zulqarnain ◽  
Zafar Iqbal ◽  
Russell Cox ◽  
Jawad Anwar ◽  
Nasir Ahmad ◽  
...  

2021 ◽  
Vol 36 ◽  
pp. 100773
Author(s):  
David Samuvel Michael ◽  
M. Krishna Priya ◽  
J. Sidharthan ◽  
M. Kumar ◽  
Rajadurai Vijay Solomon ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3116 ◽  
Author(s):  
Xingxing Teng ◽  
Yuanyuan Wang ◽  
Jinhua Gu ◽  
Peiqi Shi ◽  
Zhibin Shen ◽  
...  

Pseudoaspidinol is a phloroglucinol derivative with Antifungal activity and is a major active component of Dryopteris fragrans. In our previous work, we studied the total synthesis of pseudoaspidinol belonging to a phloroglucinol derivative and investigated its antifungal activity as well as its intermediates. However, the results showed these compounds have low antifungal activity. In this study, in order to increase antifungal activities of phloroglucinol derivatives, we introduced antifungal pharmacophore allylamine into the methylphloroglucinol. Meanwhile, we remained C1–C4 acyl group in C-6 position of methylphloroglucinol using pseudoaspidinol as the lead compound to obtain novel phloroglucinol derivatives, synthesized 17 compounds, and evaluated antifungal activities on Trichophyton rubrum and Trichophyton mentagrophytes in vitro. Molecular docking verified their ability to combine the protein binding site. The results indicated that most of the compounds had strong antifungal activity, in which compound 17 were found to be the most active on Trichophyton rubrum with Minimum Inhibitory Concentration (MIC) of 3.05 μg/mL and of Trichophyton mentagrophytes with MIC of 5.13 μg/mL. Docking results showed that compounds had a nice combination with the protein binding site. These researches could lay the foundation for developing antifungal agents of clinical value.


Sign in / Sign up

Export Citation Format

Share Document