Antifungal activity of compounds isolated from Aspergillus niger and their molecular docking studies with tomatinase

2018 ◽  
Vol 34 (18) ◽  
pp. 2642-2646 ◽  
Author(s):  
Zulqarnain ◽  
Zafar Iqbal ◽  
Russell Cox ◽  
Jawad Anwar ◽  
Nasir Ahmad ◽  
...  
2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526
Author(s):  
Smaranda Oniga ◽  
Catalin Araniciu ◽  
Gabriel Marc ◽  
Livia Uncu ◽  
Mariana Palage ◽  
...  

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h.


Author(s):  
Belgin Sever ◽  
Mehlika Dilek Altıntop ◽  
Ahmet Özdemir

Background: Due to the increasing number of cases of invasive fungal infections (IFIs), there is an urgent need to identify potent antifungal agents capable of combating IFIs. Pyrazolines are one such class of therapeutically active agents that could be considered to fulfil this need. Objective: In this context, this paper aims to identify two new series of bis-pyrazolines endowed with potent antifungal activity against Candida albicans and Aspergillus niger. Methods: Two new series of bis-pyrazolines (4a-i, 5a-e) were synthesized through an efficient and and versatile synthetic procedure. The compounds were screened for their antifungal effects on C. albicans and A. niger using a broth microdilution method. Their cytotoxic effects on NIH/3T3 mouse embryonic fibroblast cell line were determined using MTT assay. Molecular docking studies were performed in the active site of lanosterol 14α-demethylase (CYP51) to shed light on their antifungal effects using Schrödinger’s Maestro molecular modeling package. Results And Discussion: 5,5'-(1,4-Phenylene)bis[1-(2-(5-phenyl-1,3,4-oxadiazol-2-yl)thio)acetyl)-3-(2-thienyl)-4,5- dihydro-1H-pyrazole] (4a) and 5,5'-(1,4-phenylene)bis[1-(2-(4-(2-hydroxyethyl)-1-piperazinylthiocarbamoyl)thio)acetyl)-3- (2-thienyl)-4,5-dihydro-1H-pyrazole] (5a) were found as the most promising antifungal agents in this series. Compounds 4a and 5a showed pronounced antifungal activity against C. albicans (MIC= 0.016 mg/mL) and A. niger (MIC= 0.008 mg/mL). Based on MTT assay, their antifungal effects were selective (IC50 > 0.500 mg/mL for NIH/3T3 cell line). Molecular docking studies suggested that compounds 5a-e might show their anticandidal effects via CYP51 inhibition in regard to their stronger interactions in the active site of CYP51. Conclusion: Compounds 4a and 5a stand out as potential antifungal agents for the management of IFIs caused by C. albicans and A. niger.


2020 ◽  
Vol 17 (3) ◽  
pp. 330-340
Author(s):  
Ehsan Ullah Mughal ◽  
Hafiz Umar Farooq ◽  
Amina Sadiq ◽  
Hummera Rafique ◽  
Sajjad Hussain Sumrra ◽  
...  

Introduction: Heterocyclic compounds are vital to life, since they constitute the most interesting part of the pharmacologically active drugs. Dihydropyrimidine-2-one/thione (DHPM) as the heterocyclic nucleus is the basic part of the most natural as well as synthetic drugs. Synthesis of new derivatives of DHPM and screening their pharmacological potential appear to be an important goal. Methodology: In this study, we have synthesized 15 derivatives of 3,4-dihydropyrimidin-2(1H)- ones/thiones through simple one-step synthetic method comprising one-pot condensation of variously substituted benzaldehydes, urea/thiourea and ethyl acetoacetate using ammonium chloride in methanol as well as under solvent-free conditions. In comparison, the former methodology was proved more efficient, convenient and gave higher yields. Moreover, those compounds were screened for their potential against bacterial strains (S. aureus and E. coli) and fungal strains (C. albicans and C. parapsilosis). Results and Discussion: The experimental results revealed that the synthesized compounds are more active against C. albicans fungus as compared to other tested microbes. Amongst all the synthesized derivatives, compound 3 showed significant non-competitive potential antifungal activity in vitro antimicrobial assay. Theoretically, molecular docking studies showed that these compounds can bind effectively to oxidoreductase enzyme of E. coli and CYP-51 oxidoreductase of C. albicans. Conclusion: Herein, we report improved and high yield reaction conditions for the synthesis of biologically active dihydropyrimidine-2-one, and-thione derivatives. Remarkably, most of the synthesized compounds demonstrated moderate to very good antifungal activity in comparison to the antibacterial activity.


2013 ◽  
Vol 9 (3) ◽  
pp. 384-388 ◽  
Author(s):  
Nan Wang ◽  
Xiaoyun Chai ◽  
Ying Chen ◽  
Lei Zhang ◽  
Wenjuan Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Nafiz Öncü Can ◽  
Ulviye Acar Çevik ◽  
Begüm Nurpelin Sağlık ◽  
Serkan Levent ◽  
Büşra Korkut ◽  
...  

Due to anticandidal importance of azole compounds, a new series of benzimidazole-triazole derivatives(5a–5s)were designed and synthesized as ergosterol inhibitors. The chemical structures of the target compounds were characterized by spectroscopic methods. The final compounds were screened for antifungal activity againstCandida glabrata(ATCC 90030),Candida krusei(ATCC 6258),Candida parapsilosis(ATCC 22019), andCandida albicans(ATCC 24433). Compounds5iand5sexhibited significant inhibitory activity againstCandidastrains with MIC50values ranging from 0.78 to 1.56 μg/mL. Cytotoxicity results revealed that IC50values of compounds5iand5sagainst NIH/3T3 are significantly higher than their MIC50values. Effect of the compounds5iand5sagainst ergosterol biosynthesis was determined by LC-MS-MS analysis. Both compounds caused a significant decrease in the ergosterol level. The molecular docking studies were performed to investigate the interaction modes between the compounds and active site of lanosterol 14-α-demethylase (CYP51), which is as a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for final compounds.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1964 ◽  
Author(s):  
Volodymyr Horishny ◽  
Victor Kartsev ◽  
Athina Geronikaki ◽  
Vasyl Matiychuk ◽  
Anthi Petrou ◽  
...  

Background: Infectious diseases symbolize a global consequential strain on public health security and impact on the socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in crucial need for the discovery and development of novel entity for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using classical methods of organic synthesis. Results: All 20 synthesized compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species. It should be mentioned that all compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Furthermore, 18 compounds appeared to be more potent than streptomycin against Staphylococcus aureus, Enterobacter cloacae, Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli. Three the most active compounds 4h, 5b, and 5g appeared to be more potent against MRSA than ampicillin, while streptomycin did not show any bactericidal activity. All three compounds displayed better activity also against resistant strains P. aeruginosa and E. coli than ampicillin. Furthermore, all compounds were able to inhibit biofilm formation 2- to 4-times more than both reference drugs. Compounds were evaluated also for their antifungal activity against eight species. The evaluation revealed that all compounds exhibited antifungal activity better than the reference drugs bifonazole and ketoconazole. Molecular docking studies on antibacterial and antifungal targets were performed in order to elucidate the mechanism of antibacterial activity of synthesized compounds. Conclusion: All tested compounds showed good antibacterial and antifungal activity better than that of reference drugs and three the most active compounds could consider as lead compounds for the development of new more potent agents.


2019 ◽  
Vol 70 (10) ◽  
pp. 3522-3526

Considering the well-established antifungal activity of azole compounds, a new series of thiazolyl-methylen-1,3,4-oxadiazolines derivatives were designed and synthesized as lanosterol-demethylase inhibitors. The final compounds were screened for antifungal activity against the Candida albicans ATCC 90028 strain. Molecular docking studies were performed to investigate the interaction modes between the compounds and the active site of lanosterol 14a-demethylase, which is a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for the final compounds 5a-h. Keywords: Thiazolyl-methylen-1,3,4-oxadiazolines, Candida albicans, lanosterol 14a-demethylase


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 309
Author(s):  
Michelyne Haroun ◽  
Christophe Tratrat ◽  
Aggeliki Kolokotroni ◽  
Anthi Petrou ◽  
Athina Geronikaki ◽  
...  

In this study, we report the design, synthesis, computational and experimental evaluation of the antimicrobial activity, as well as docking studies of new 5-methylthiazole based thiazolidinones. All compounds demonstrated antibacterial efficacy, some of which (1,4,10 and 13) exhibited good activity against E. coli and B. cereus. The evaluation of antibacterial activity against three resistant strains, MRSA, P. aeruginosa and E. coli, revealed that compound 12 showed the best activity, higher than reference drugs ampicillin and streptomycin, which were inactive or exhibited only bacteriostatic activity against MRSA, respectively. Ten out of fifteen compounds demonstrated higher potency than reference drugs against a resistant strain of E. coli, which appeared to be the most sensitive species to our compounds. Compounds 8, 13 and 14 applied in a concentration equal to MIC reduced P. aeruginosa biofilm formation by more than 50%. All compounds displayed antifungal activity, with compound 10 being the most active. The majority of compounds showed better activity than ketoconazole against almost all fungal strains. In order to elucidate the mechanism of antibacterial and antifungal activities, molecular docking studies on E. coli Mur B and C. albicans CYP51 and dihydrofolate reductase were performed. Docking analysis of E. coli MurB indicated a probable involvement of MurB inhibition in the antibacterial mechanism of tested compounds while docking to 14α-lanosterol demethylase (CYP51) and tetrahydrofolate reductase of Candida albicans suggested that probable involvement of inhibition of CYP51 reductase in the antifungal activity of the compounds. Potential toxicity toward human cells is also reported.


Sign in / Sign up

Export Citation Format

Share Document