Potential Inhibition of COVID-19 RNA-dependent RNA Polymerase by Hepatitis C Virus Non-nucleoside Inhibitors: An In-silico Perspective

Author(s):  
Yee Siew Choong ◽  
Theam Soon Lim ◽  
Hanyun Liu ◽  
Rubin Jiang ◽  
Zimu Cai ◽  
...  

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel member of the genus betacoronavirus in the Coronaviridae family. It has been identified as the causative agent of coronavirus disease 2019 (COVID-19) spreading rapidly in Asia, America and Europe. Like some other RNA viruses, RNA replication and transcription of SARS-CoV-2 relies on its RNA-dependent RNA polymerase (RdRP), which is a therapeutic target of clinical importance. Crystal structure of SARS-CoV-2 that was solved recently (PDB ID 6M71) with some missing residues. Objective: We used SARS-CoV-2 RdRP as a target protein to screen for possible chemical molecules with potential antiviral effects. Method: Here we modelled the missing residues 896-905 via homology modelling and then analysed the interactions of Hepatitis C virus allosteric non-nucleoside inhibitors (NNIs) in the reported NNIs binding sites in SARS-CoV-2 RdRP. Results and Discussion: We found that MK-3281, filibuvir, setrobuvir and dasabuvir might be able to inhibit SARS-CoV-2 RdRP based on their binding affinities in the respective binding sites. Conclusion: Further in vitro and in vivo experimental research will be carried out to evaluate their effectiveness in COVID19 treatment in the near future.


2003 ◽  
Vol 77 (7) ◽  
pp. 4149-4159 ◽  
Author(s):  
Lu Gao ◽  
Hong Tu ◽  
Stephanie T. Shi ◽  
Ki-Jeong Lee ◽  
Miyuki Asanaka ◽  
...  

ABSTRACT To identify potential cellular regulators of hepatitis C virus (HCV) RNA-dependent RNA polymerase (NS5B), we searched for cellular proteins interacting with NS5B protein by yeast two-hybrid screening of a human hepatocyte cDNA library. We identified a ubiquitin-like protein, hPLIC1 (for human homolog 1 of protein linking intergrin-associated protein and cytoskeleton), which is expressed in the liver (M. F. Kleijnen, A. H. Shih, P. Zhou, S. Kumar, R. E. Soccio, N. L. Kedersha, G. Gill, and P. M. Howley, Mol. Cell 6: 409-419, 2000). In vitro binding assays and in vivo coimmunoprecipitation studies confirmed the interaction between hPLIC1 and NS5B, which occurred through the ubiquitin-associated domain at the C terminus of the hPLIC1 protein. As hPLICs have been shown to physically associate with two E3 ubiquitin protein ligases as well as proteasomes (Kleijnen et al., Mol. Cell 6: 409-419, 2000), we investigated whether the stability and posttranslational modification of NS5B were affected by hPLIC1. A pulse-chase labeling experiment revealed that overexpression of hPLIC1, but not the mutant lacking the NS5B-binding domain, significantly shortened the half-life of NS5B and enhanced the polyubiquitination of NS5B. Furthermore, in Huh7 cells that express an HCV subgenomic replicon, the amounts of both NS5B and the replicon RNA were reduced by overexpression of hPLIC1. Thus, hPLIC1 may be a regulator of HCV RNA replication through interaction with NS5B.



2004 ◽  
Vol 69 (7) ◽  
pp. 782-788 ◽  
Author(s):  
A. V. Ivanov ◽  
M. V. Kozlov ◽  
A. O. Kuzyakin ◽  
D. A. Kostyuk ◽  
V. L. Tunitskaya ◽  
...  


2005 ◽  
Vol 280 (18) ◽  
pp. 18202-18210 ◽  
Author(s):  
Bichitra K. Biswal ◽  
Maia M. Cherney ◽  
Meitian Wang ◽  
Laval Chan ◽  
Constantin G. Yannopoulos ◽  
...  


2009 ◽  
Vol 82 (2) ◽  
pp. A28-A29
Author(s):  
Olga Ivanova ◽  
Vera Tunitskaya ◽  
Alexander Ivanov ◽  
Vladimir Mitkevich ◽  
Vladimir Prassolov ◽  
...  


2012 ◽  
Vol 55 (6) ◽  
pp. 2481-2531 ◽  
Author(s):  
Michael J. Sofia ◽  
Wonsuk Chang ◽  
Phillip A. Furman ◽  
Ralph T. Mosley ◽  
Bruce S. Ross


2014 ◽  
Vol 348 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Gizem Çakır ◽  
İlkay Küçükgüzel ◽  
Rupa Guhamazumder ◽  
Esra Tatar ◽  
Dinesh Manvar ◽  
...  


2017 ◽  
Vol 60 (7) ◽  
pp. 3219-3219
Author(s):  
Michael J. Sofia ◽  
Wonsuk Chang ◽  
Phillip A. Furman ◽  
Ralph T. Mosley ◽  
Bruce S. Ross


Virology ◽  
2009 ◽  
Vol 388 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Hiroshi Kanamori ◽  
Kazuhito Yuhashi ◽  
Yasutoshi Uchiyama ◽  
Tatsuhiko Kodama ◽  
Shin Ohnishi


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Philipp Schult ◽  
Maren Nattermann ◽  
Chris Lauber ◽  
Stefan Seitz ◽  
Volker Lohmann

ABSTRACT Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo. Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5′ untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps. IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo. Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.



Author(s):  
Dhanasekaran Sivaraman ◽  
Puspharaj selvadoss Pradeep

Spread of severe acute respiratory syndrome coronavirus (SARS-CoV-2) made a historic transition between December 2019 to March 2020. In the present scenario SARS-CoV-2 as becomes a major burden on public health and economic stability of societies around the globe. From the substantial evidences gained from the pandemic of SARS-CoV-2 and MERS-CoV (Middle East respiratory syndrome coronavirus), scientists and clinicians strongly believes that these pathogenic viruses share common homology of some biologically active enzymes which includes RNA-dependent RNA polymerase (RdRP), 3-chymotrypsin-like protease (3CLpro), papain-like protease (PLpro) etc. RdRP relatively grabs higher level of clinical importance in comparison with other enzyme target. Indian system of traditional medicine pioneering the therapy towards infectious disease since several centuries. In view of this potential therapeutic leads from some of the Indian medicines along with standard drug favipiravir subjected to docking investigation targeting SARS-CoV-2- RNA dependent RNA polymerase (RdRp). Residual proximity analysis reveals 18 out of 28 compounds reveals potential binding affinity of about 100% with the target amino acid residue (618 ASP, 760 ASP,761 ASP), 7 out of 28 reveals 75% binding efficacy and 3 out of 28 reveals 25% binding efficacy with that of the target residue. Hence further clinical validation may be warranted with proper in-vitro and in-vivo studies prior to the clinical recommendation in treating COVID-19 patient’s.



Sign in / Sign up

Export Citation Format

Share Document