Hepatitis C Virus NS5A Protein In Vitro Modulates Template Selection by the RNA-dependent RNA Polymerase

2009 ◽  
Vol 82 (2) ◽  
pp. A28-A29
Author(s):  
Olga Ivanova ◽  
Vera Tunitskaya ◽  
Alexander Ivanov ◽  
Vladimir Mitkevich ◽  
Vladimir Prassolov ◽  
...  
FEBS Letters ◽  
2008 ◽  
Vol 583 (2) ◽  
pp. 277-280 ◽  
Author(s):  
Alexander V. Ivanov ◽  
Vera L. Tunitskaya ◽  
Olga N. Ivanova ◽  
Vladimir A. Mitkevich ◽  
Vladimir S. Prassolov ◽  
...  

Author(s):  
Yee Siew Choong ◽  
Theam Soon Lim ◽  
Hanyun Liu ◽  
Rubin Jiang ◽  
Zimu Cai ◽  
...  

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel member of the genus betacoronavirus in the Coronaviridae family. It has been identified as the causative agent of coronavirus disease 2019 (COVID-19) spreading rapidly in Asia, America and Europe. Like some other RNA viruses, RNA replication and transcription of SARS-CoV-2 relies on its RNA-dependent RNA polymerase (RdRP), which is a therapeutic target of clinical importance. Crystal structure of SARS-CoV-2 that was solved recently (PDB ID 6M71) with some missing residues. Objective: We used SARS-CoV-2 RdRP as a target protein to screen for possible chemical molecules with potential antiviral effects. Method: Here we modelled the missing residues 896-905 via homology modelling and then analysed the interactions of Hepatitis C virus allosteric non-nucleoside inhibitors (NNIs) in the reported NNIs binding sites in SARS-CoV-2 RdRP. Results and Discussion: We found that MK-3281, filibuvir, setrobuvir and dasabuvir might be able to inhibit SARS-CoV-2 RdRP based on their binding affinities in the respective binding sites. Conclusion: Further in vitro and in vivo experimental research will be carried out to evaluate their effectiveness in COVID19 treatment in the near future.


Virology ◽  
2009 ◽  
Vol 388 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Hiroshi Kanamori ◽  
Kazuhito Yuhashi ◽  
Yasutoshi Uchiyama ◽  
Tatsuhiko Kodama ◽  
Shin Ohnishi

2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Philipp Schult ◽  
Maren Nattermann ◽  
Chris Lauber ◽  
Stefan Seitz ◽  
Volker Lohmann

ABSTRACT Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo. Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5′ untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps. IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo. Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


2003 ◽  
Vol 77 (7) ◽  
pp. 4149-4159 ◽  
Author(s):  
Lu Gao ◽  
Hong Tu ◽  
Stephanie T. Shi ◽  
Ki-Jeong Lee ◽  
Miyuki Asanaka ◽  
...  

ABSTRACT To identify potential cellular regulators of hepatitis C virus (HCV) RNA-dependent RNA polymerase (NS5B), we searched for cellular proteins interacting with NS5B protein by yeast two-hybrid screening of a human hepatocyte cDNA library. We identified a ubiquitin-like protein, hPLIC1 (for human homolog 1 of protein linking intergrin-associated protein and cytoskeleton), which is expressed in the liver (M. F. Kleijnen, A. H. Shih, P. Zhou, S. Kumar, R. E. Soccio, N. L. Kedersha, G. Gill, and P. M. Howley, Mol. Cell 6: 409-419, 2000). In vitro binding assays and in vivo coimmunoprecipitation studies confirmed the interaction between hPLIC1 and NS5B, which occurred through the ubiquitin-associated domain at the C terminus of the hPLIC1 protein. As hPLICs have been shown to physically associate with two E3 ubiquitin protein ligases as well as proteasomes (Kleijnen et al., Mol. Cell 6: 409-419, 2000), we investigated whether the stability and posttranslational modification of NS5B were affected by hPLIC1. A pulse-chase labeling experiment revealed that overexpression of hPLIC1, but not the mutant lacking the NS5B-binding domain, significantly shortened the half-life of NS5B and enhanced the polyubiquitination of NS5B. Furthermore, in Huh7 cells that express an HCV subgenomic replicon, the amounts of both NS5B and the replicon RNA were reduced by overexpression of hPLIC1. Thus, hPLIC1 may be a regulator of HCV RNA replication through interaction with NS5B.


2010 ◽  
Vol 87 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Itxaso Bellón-Echeverría ◽  
Alberto José López-Jiménez ◽  
Pilar Clemente-Casares ◽  
Antonio Mas

2010 ◽  
Vol 84 (12) ◽  
pp. 5923-5935 ◽  
Author(s):  
S. Chinnaswamy ◽  
A. Murali ◽  
P. Li ◽  
K. Fujisaki ◽  
C. C. Kao

ABSTRACT The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has been proposed to change conformations in association with RNA synthesis and to interact with cellular proteins. In vitro, the RdRp can initiate de novo from the ends of single-stranded RNA or extend a primed RNA template. The interactions between the Δ1 loop and thumb domain in NS5B are required for de novo initiation, although it is unclear whether these interactions are within an NS5B monomer or are part of a higher-order NS5B oligomeric complex. This work seeks to address how polymerase conformation and/or oligomerization affects de novo initiation. We have shown that an increasing enzyme concentration increases de novo initiation by the genotype 1b and 2a RdRps while primer extension reactions are not affected or inhibited under similar conditions. Initiation-defective mutants of the HCV polymerase can increase de novo initiation by the wild-type (WT) polymerase. GTP was also found to stimulate de novo initiation. Our results support a model in which the de novo initiation-competent conformation of the RdRp is stimulated by oligomeric contacts between individual subunits. Using electron microscopy and single-molecule reconstruction, we attempted to visualize the low-resolution conformations of a dimer of a de novo initiation-competent HCV RdRp.


2003 ◽  
Vol 47 (8) ◽  
pp. 2674-2681 ◽  
Author(s):  
Weidong Zhong ◽  
Haoyun An ◽  
Dinesh Barawkar ◽  
Zhi Hong

ABSTRACT Replication of hepatitis C virus (HCV) RNA is catalyzed by the virally encoded RNA-dependent RNA polymerase NS5B. It is believed that the viral polymerase utilizes a de novo or primer-independent mechanism for initiation of RNA synthesis. Our previous work has shown that dinucleotides were efficient initiation molecules for NS5B in vitro (W. Zhong, E. Ferrari, C. A. Lesburg, D. Maag, S. K. Ghosh, C. E. Cameron, J. Y. Lau, and Z. Hong, J. Virol. 74:9134-9143, 2000). In this study, we further demonstrated that dinucleotide analogues could serve as inhibitors of de novo initiation of RNA synthesis directed by HCV NS5B. Both mononucleotide- and dinucleotide-initiated RNA syntheses were affected by dinucleotide analogues. The presence of the 5′-phosphate group in the dinucleotide compounds was required for efficient inhibition of de novo initiation. Optimal inhibitory activity also appeared to be dependent on the base-pairing potential between the compounds and the template terminal bases. Because the initiation process is a rate-limiting step in viral RNA replication, inhibitors that interfere with the initiation process will have advantages in suppressing virus replication. The use of dinucleotide analogues as inhibitor molecules to target viral replication initiation represents a novel approach to antiviral interference.


2011 ◽  
Vol 418 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Chin-kai Tseng ◽  
Kuan-Jen Chen ◽  
Chun-Kuang Lin ◽  
Shih-hsien Hsu ◽  
Jin-Ching Lee

Sign in / Sign up

Export Citation Format

Share Document