Small Molecular Leads Differentially Active Against HER2 Positive and Triple Negative Breast Cancer Cell Lines

2019 ◽  
Vol 15 (7) ◽  
pp. 738-742 ◽  
Author(s):  
Adnan Badran ◽  
Atia-tul-Wahab ◽  
Sharmeen Fayyaz ◽  
Elias Baydoun ◽  
Muhammad Iqbal Choudhary

Background:Breast cancer is the most prevalent cancer type in women globally. It is characterized by distinct subtypes depending on different gene expression patterns. Oncogene HER2 is expressed on the surface of cell and is responsible for cell growth regulation. Increase in HER2 receptor protein due to gene amplification, results in aggressive growth, and high metastasis in cancer cells.Methods:The current study evaluates and compares the anti-breast cancer effect of commercially available compounds against HER2 overexpressing BT-474, and triple negative MDA-MB-231 breast cancer cell lines.Results:Preliminary in vitro cell viability assays on these cell lines identified 6 lead molecules active against breast cancer. Convallatoxin (4), a steroidal lactone glycoside, showed the most potent activity with IC50 values of 0.63 ± 0.56, and 0.69 ± 0.59 µM against BT-474 and MDA-MB-231, respectively, whereas 4-[4-(Trifluoromethyl)-phenoxy] phenol (3) a phenol derivative, and Reserpine (5) an indole alkaloid selectively inhibited the growth of BT-474, and MDA-MB-231 breast cancer cells, respectively.Conclusion:These results exhibited the potential of small molecules in the treatment of HER2 amplified and triple negative breast cancers in vitro.

2021 ◽  
pp. 1-11
Author(s):  
Meng Li ◽  
Wenmin Zhang ◽  
Xiaodan Yang ◽  
Guo An ◽  
Wei Zhao

BACKGROUND: The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS: α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS: α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5–3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS: Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1416
Author(s):  
Ahmed Al Saqr ◽  
Shahid Ud Din Wani ◽  
H. V. Gangadharappa ◽  
Mohammed F. Aldawsari ◽  
El-Sayed Khafagy ◽  
...  

Despite decades of research, breast cancer therapy remains a great challenge. Docetaxel is an antimicrotubule agent that is effectively used for the treatment of breast cancer. However, its clinical use is significantly hampered by its low water solubility and systemic toxicity. The current study was designed to prepare docetaxel (DXL)-loaded silk-fibroin-based nanoparticles (SF-NPs) and to screen their potential antitumor activity against breast cancer cell lines. DXL-loaded SF-NPs were prepared using a nanoprecipitation technique and were evaluated for particle size, zeta potential, entrapment efficiency, and in vitro release profile. In addition, DXL-loaded SF-NPs were screened for in vitro cytotoxicity, cellular uptake, and apoptotic potential against MCF-7 and MDA-MB-231 breast cancer cell lines. The prepared DXL-loaded SF-NPs were 178 to 198 nm in diameter with a net negative surface charge and entrapment efficiency ranging from 56% to 72%. In vitro release studies exhibited a biphasic release profile of DXL from SF-NPs with sustained drug release for 72 h. In vitro cell studies revealed that entrapment of DXL within SF-NPs significantly improved cytotoxic potential against breast cancer cell lines, compared to the free drug, and enhanced cellular uptake of DXL by breast cancer cells. Furthermore, the accumulation in the G2/M phase was significantly higher in cells treated with DXL-loaded SF-NPs than in cells treated with free DXL. Collectively, the superior antitumor activities of DXL-loaded SF-NPs against breast cancer cells, compared to free DXL, could be ascribed to improved apoptosis and cell cycle arrest. Our results highlighted the feasibility of using silk fibroin nanoparticles as a nontoxic biocompatible delivery vehicle for enhanced therapeutic outcomes in breast cancer.


2011 ◽  
Vol 17 (16) ◽  
pp. 5275-5286 ◽  
Author(s):  
Rachel Sharpe ◽  
Alex Pearson ◽  
Maria T. Herrera-Abreu ◽  
Damian Johnson ◽  
Alan Mackay ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 384 ◽  
Author(s):  
Arianna Bonizzi ◽  
Marta Truffi ◽  
Marta Sevieri ◽  
Raffaele Allevi ◽  
Leopoldo Sitia ◽  
...  

Everolimus (Eve) is an FDA approved drug that inhibits mammalian target of rapamycin (mTOR). It is employed in breast cancer treatment even if its responsiveness is controversial. In an attempt to increase Eve effectiveness, we have developed a novel Eve nanoformulation exploiting H-ferritin nanocages (HEve) to improve its subcellular delivery. We took advantage of the natural tumor targeting of H-Ferritin, which is mediated by the transferrin receptor-1 (TfR1). Breast cancer cells overexpressing TfR-1 were successfully recognized by H-Ferritin, displaying quick nanocage internalization. HEve has been tested and compared to Eve for in vitro efficacy in sensitive and resistant breast cancer cells. Nanoformulated Eve induced remarkable antiproliferative activity in vitro, making even resistant cell lines sensitive to Eve. Moreover, the antiproliferative activity of HEve is fully in accordance with cytotoxicity observed by cell death assay. Furthermore, the significant increase in anticancer efficacy displayed in HEve-treated samples is due to the improved drug accumulation, as demonstrated by UHPLC-MS/MS quantifications. Our findings suggest that optimizing Eve subcellular delivery, thanks to nanoformulation, determines its improved antitumor activity in a panel of Eve-sensitive or resistant breast cancer cell lines.


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2021 ◽  
Vol 22 (8) ◽  
pp. 4153
Author(s):  
Kutlwano R. Xulu ◽  
Tanya N. Augustine

Thromboembolic complications are a leading cause of morbidity and mortality in cancer patients. Cancer patients often present with an increased risk for thrombosis including hypercoagulation, so the application of antiplatelet strategies to oncology warrants further investigation. This study investigated the effects of anastrozole and antiplatelet therapy (aspirin/clopidogrel cocktail or atopaxar) treatment on the tumour responses of luminal phenotype breast cancer cells and induced hypercoagulation. Ethical clearance was obtained (M150263). Blood was co-cultured with breast cancer cell lines (MCF7 and T47D) pre-treated with anastrozole and/or antiplatelet drugs for 24 h. Hypercoagulation was indicated by thrombin production and platelet activation (morphological and molecular). Gene expression associated with the epithelial-to-mesenchymal transition (EMT) was assessed in breast cancer cells, and secreted cytokines associated with tumour progression were evaluated. Data were analysed with the PAST3 software. Our findings showed that antiplatelet therapies (aspirin/clopidogrel cocktail and atopaxar) combined with anastrozole failed to prevent hypercoagulation and induced evidence of a partial EMT. Differences in tumour responses that modulate tumour aggression were noted between breast cancer cell lines, and this may be an important consideration in the clinical management of subphenotypes of luminal phenotype breast cancer. Further investigation is needed before this treatment modality (combined hormone and antiplatelet therapy) can be considered for managing tumour associated-thromboembolic disorder.


Sign in / Sign up

Export Citation Format

Share Document