scholarly journals Theoretical Studies on the Selectivity Mechanisms of Glycogen Synthase Kinase 3β (GSK3β) with Pyrazine ATP-competitive Inhibitors by 3DQSAR, Molecular Docking, Molecular Dynamics Simulation and Free Energy Calculations

2020 ◽  
Vol 16 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Jingyu Zhu ◽  
Yuanqing Wu ◽  
Lei Xu ◽  
Jian Jin

Background: Glycogen synthase kinase-3 (GSK3) is associated with various key biological processes and has been considered as an important therapeutic target for the treatment of many diseases. Great efforts have been made on the development of GSK3 inhibitors, especially ATP-competitive GSK3β inhibitor, but it is still a great challenge to develop selective GSK3β inhibitors because of the high sequence homology with other kinases. Objective: In order to reveal the selectivity mechanisms of GSK3β inhibition at the molecular level, a series of ATP-competitive GSK3β inhibitor was analyzed by a systematic computational method, combining 3DQSAR, molecular docking, molecular dynamic simulations and free energy calculations. Methods: Firstly, 3D-QSAR with CoMFA was built to explore the general structure activity relationships. Secondly, CDOCKER and Flexible docking were employed to predicted the reasonable docking poses of all studied inhibitors. And then, both GSK3β and CDK2 complexes were selected to conduct molecular dynamics simulations. Finally, the free energy calculations were employed to find the key selective-residues. Results: CoMFA model suggested the steric, hydrophobic fields play key roles in the bioactivities of inhibitors, and the binding mechanisms were well analyzed through molecular docking. The binding free energies predicted are in good agreement with the experimental bioactivities and the free energy calculations showed that the binding of GSK3β/inhibitors was mainly contributed from hydrogen bonding and hydrophobic interaction. Conclusion: Some key residues for selective binding were highlighted, which may afford important guidance for the rational design of novel ATP-competitive GSK3β inhibitors.

2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


Sign in / Sign up

Export Citation Format

Share Document