Uniform Magnetic field (UMF) Effect on the Heat Transfer of a Porous Half-Annulus Enclosure Filled by Cu-Water Nanofluid Considering Heat Generation

2018 ◽  
Vol 14 (3) ◽  
pp. 187-198 ◽  
Author(s):  
Mohammad Hatami ◽  
Jingyu Jin ◽  
Hamid Reza Ashorynejad ◽  
Dengwei Jing

Background: In this work, the effect of a uniform magnetic field (UMF) on the natural convection heat transfer of Cu-water nanofluid in a porous half-annulus cavity is studied by finite element method, considering heat generation. The effects of four parameters (magnetic field angle (γ), Hartmann number (Ha), nanoparticles volume fraction (φ) and Rayleigh number (Ra)) on the local and average Nusselt numbers of outer wall have been investigated. Methods: Numerical Finite Element Method (FEM) based on FlexPDE commercial code was used to solve the described problems and the validation was also performed by Finite Difference Method (FDM) in previous studies. Results: It was found that by applying external magnetic field with a certain angle with respect to the geometry, the maximum local heat Nusselt number could shift to one side of outer wall and the shift is dependent on the angle of the imposed magnetic field. Conclusion: Our results also confirm that increasing the Hartmann number decreases the Nusselt number due to Lorentz force resulting from the presence of stronger magnetic field which slows down the fluid motion and in turn leads to a decreased heat transfer.

10.19082/4171 ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 4171-4179
Author(s):  
Mohammad Javad Tahmasebibirgani ◽  
Reza Maskani ◽  
Mohammad Ali Behrooz ◽  
Mansour Zabihzadeh ◽  
Hojatollah Shahbazian ◽  
...  

Author(s):  
A.S. Dogonchi ◽  
F. Selimefendigil ◽  
D.D. Ganji

Purpose The purpose of this study is to peruse natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method. Design/methodology/approach Governing equations formulated in dimensionless stream function, vorticity and temperature variables using the single-phase nanofluid model with the Koo–Kleinstreuer–Li correlation for the effective dynamic viscosity and the effective thermal conductivity have been solved numerically by control volume finite element method. Findings Effects of various pertinent parameters such as Rayleigh number, Hartmann number, volume fraction of nanofluid and shape factor of nanoparticle on the convective heat transfer characteristics are analysed. It was observed that local and average heat transfer rates increase for higher value of Rayleigh number and lower value of Hartmann number. Among various nanoparticle shapes, platelets were found to be best in terms of heat transfer performance. The amount of average Nusselt number reductions was found to be different when nanofluids with different solid particle volume fractions were considered due to thermal and electrical conductivity enhancement of fluid with nanoparticle addition. Originality/value A comprehensive study of the natural convection in a CuO-water nanofluid-filled complex-shaped enclosure under the influence of a uniform magnetic field by using control volume finite element method is addressed.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
M. G. Sobamowo

In this study, the optimum design dimensions and performance analyses of convective-radiative cooling fin subjected to magnetic field are presented using finite element method. The numerical solutions are verified by the exact analytical solution for the linearized models using Laplace transform. The optimum dimensions for the optimum performance of the convection-radiative fin with variable thermal conductivity are investigated and presented graphically. Also, the effects of convective, radiative, and magnetic parameters as well as Biot number on the thermal performance of the cooling fin are analyzed using the numerical solutions. From the results, it is established that the optimum length of the fin and the thermogeometric parameter increases as the nonlinear thermal conductivity term increases. Further analyses also reveal that as the Biot number, convective, radiative, and magnetic parameters, increases, the rate of heat transfer from the fin increases and consequently improves the efficiency of the fin. Additionally, effects of the thermal stability values for the various multiboiling heat transfer modes are established. It is established that, in order to ensure stability and avoid numerical diffusion of the solution by the Galerkin finite element method, the thermogeometric parameter must not exceed some certain values for the different multiboiling heat transfer modes. It is hope that the present study will enhance the understanding of thermal response of solid fin under various factors and fin design considerations.


1995 ◽  
Vol 31 (3) ◽  
pp. 1416-1419 ◽  
Author(s):  
T. Nakata ◽  
N. Takahashi ◽  
K. Fujiwara ◽  
K. Muramatsu ◽  
H. Ohashi ◽  
...  

2007 ◽  
Vol 340-341 ◽  
pp. 737-742
Author(s):  
Yong Ming Guo

In this paper, single action die and double action die hot forging problems are analyzed by a combined FEM, which consists of the volumetrically elastic and deviatorically rigid-plastic FEM and the heat transfer FEM. The volumetrically elastic and deviatorically rigid-plastic FEM has some merits in comparison with the conventional rigid-plastic FEMs. Differences of calculated results for the two forging processes can be clearly seen in this paper. It is also verified that these calculated results are similar to those of the conventional rigid-plastic FEM in comparison with analyses of the same numerical examples by the penalty rigid-plastic FEM.


Sign in / Sign up

Export Citation Format

Share Document