Green Tea (Camellia sinensis) Protects Against Arsenic Neurotoxicity via Antioxidative Mechanism and Activation of Superoxide Dismutase Activity

Author(s):  
Smarajit Maiti ◽  
Nirmallya Acharyya ◽  
Tamal K. Ghosh ◽  
Sk. Sajed Ali ◽  
Emili Manna ◽  
...  
2013 ◽  
Vol 2 (7) ◽  
Author(s):  
M. Negahdary ◽  
R. Chelongar ◽  
S. Papi ◽  
A. Noori ◽  
R. Rahimzadeh ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Satheesh Babu Natarajan ◽  
Suriyakala Perumal Chandran ◽  
Sahar Husain Khan ◽  
Packiyaraj Natarajan ◽  
Karthiyaraj Rengarajan

Background: Tea (Camellia sinensis, Theaceae) is the second most consumed beverage in the world. Green tea is the least processed and thus contain rich antioxidant level, and believed to have most of the health benefits. </p><p> Methods: We commenced to search bibliographic collection of peer reviewed research articles and review articles to meet the objective of this study. </p><p> Results: From this study, we found that the tea beverage contains catechins are believed to have a wide range of health benefits which includes neuroprotective, anti-inflammatory, antiulcer, antiviral, antibacterial, and anti-parasitic effects. The four major catechin compounds of green tea are epigallocatechin (EGC), epicatechin (EC), epigallocatechin gallate (EGCG), and epicatechin gallate (ECG), of which EGCG is the major constituent and representing 50-80% of the total catechin content. And also contain xanthine derivatives such as caffeine, theophylline, and theobromine, and the glutamide derivative theanine. It also contains many nutritional components, such as vitamin E, vitamin C, fluoride, and potassium. We sum up the various green tea phytoconstituents, extraction methods, and its medicinal applications. </p><p> Conclusion: In this review article, we have summarized the pharmacological importance of green tea catechin which includes antioxidant potential, anti-inflammatory, antimicrobial, anticancer, antidiabetic and cosmetic application.


2020 ◽  
Vol 13 (1) ◽  
pp. 76-83
Author(s):  
Aline Maria Brito Lucas ◽  
Joana Varlla de Lacerda Alexandre ◽  
Maria Thalyne Silva Araújo ◽  
Cicera Edna Barbosa David ◽  
Yuana Ivia Ponte Viana ◽  
...  

Background: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell. Objective: We investigated the in vivo effects of mitoKATP opening on oxidative stress in isoproterenol- induced cardiac hypertrophy. Methods: Cardiac hypertrophy was induced in Swiss mice treated intraperitoneally with isoproterenol (ISO - 30 mg/kg/day) for 8 days. From day 4, diazoxide (DZX - 5 mg/kg/day) was used in order to open mitoKATP (a clinically relevant therapy scheme) and 5-hydroxydecanoate (5HD - 5 mg/kg/day) or glibenclamide (GLI - 3 mg/kg/day) were used as mitoKATP blockers. Results: Isoproterenol-treated mice had elevated heart weight/tibia length ratios (HW/TL). Additionally, hypertrophic hearts had elevated levels of carbonylated proteins and Thiobarbituric Acid Reactive Substances (TBARS), markers of protein and lipid oxidation. In contrast, mitoKATP opening with DZX avoided ISO effects on gross hypertrophic markers (HW/TL), carbonylated proteins and TBARS, in a manner reversed by 5HD and GLI. Moreover, DZX improved mitochondrial superoxide dismutase activity. This effect was also blocked by 5HD and GLI. Additionally, ex vivo treatment of isoproterenol- induced hypertrophic cardiac tissue with DZX decreased H2O2 production in a manner sensitive to 5HD, indicating that this drug also acutely avoids oxidative stress. Conclusion: Our results suggest that diazoxide blocks oxidative stress and reverses cardiac hypertrophy. This pharmacological intervention could be a potential therapeutic strategy to prevent oxidative stress associated with cardiac hypertrophy.


Author(s):  
Jéssica G. A. Melo ◽  
Jossaria P. Sousa ◽  
Ramon T. Firmino ◽  
Carolina C. Matins ◽  
Ana Flávia Granville‐Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document