scholarly journals On the Analytical and Numerical Solutions of the One-Dimensional Nonlinear Burgers' Equation

2007 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Talaat S. El-Danaf ◽  
Mohamed A. Ramadan
2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Maryam Sarboland ◽  
Azim Aminataei

The nonlinear Burgers’ equation is a simple form of Navier-Stocks equation. The nonlinear nature of Burgers’ equation has been exploited as a useful prototype differential equation for modeling many phenomena. This paper proposes two meshfree methods for solving the one-dimensional nonlinear nonhomogeneous Burgers’ equation. These methods are based on the multiquadric (MQ) quasi-interpolation operatorℒ𝒲2and direct and indirect radial basis function networks (RBFNs) schemes. In the present schemes, the Taylors series expansion is used to discretize the temporal derivative and the quasi-interpolation is used to approximate the solution function and its spatial derivatives. In order to show the efficiency of the present methods, several experiments are considered. Our numerical solutions are compared with the analytical solutions as well as the results of other numerical schemes. Furthermore, the stability analysis of the methods is surveyed. It can be easily seen that the proposed methods are efficient, robust, and reliable for solving Burgers’ equation.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 113 ◽  
Author(s):  
Muaz Seydaoğlu

An efficient technique is proposed to solve the one-dimensional Burgers’ equation based on multiquadric radial basis function (MQ-RBF) for space approximation and a Lie-Group scheme for time integration. The comparisons of the numerical results obtained for different values of kinematic viscosity are made with the exact solutions and the reported results to demonstrate the efficiency and accuracy of the algorithm. It is shown that the numerical solutions concur with existing results and the proposed algorithm is efficient and can be easily implemented.


2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


1999 ◽  
Vol 396 ◽  
pp. 223-256 ◽  
Author(s):  
B. S. BROOK ◽  
S. A. E. G. FALLE ◽  
T. J. PEDLEY

Unsteady flow in collapsible tubes has been widely studied for a number of different physiological applications; the principal motivation for the work of this paper is the study of blood flow in the jugular vein of an upright, long-necked subject (a giraffe). The one-dimensional equations governing gravity- or pressure-driven flow in collapsible tubes have been solved in the past using finite-difference (MacCormack) methods. Such schemes, however, produce numerical artifacts near discontinuities such as elastic jumps. This paper describes a numerical scheme developed to solve the one-dimensional equations using a more accurate upwind finite volume (Godunov) scheme that has been used successfully in gas dynamics and shallow water wave problems. The adapatation of the Godunov method to the present application is non-trivial due to the highly nonlinear nature of the pressure–area relation for collapsible tubes.The code is tested by comparing both unsteady and converged solutions with analytical solutions where available. Further tests include comparison with solutions obtained from MacCormack methods which illustrate the accuracy of the present method.Finally the possibility of roll waves occurring in collapsible tubes is also considered, both as a test case for the scheme and as an interesting phenomenon in its own right, arising out of the similarity of the collapsible tube equations to those governing shallow water flow.


2000 ◽  
Vol 417 ◽  
pp. 323-349 ◽  
Author(s):  
L. FRACHEBOURG ◽  
Ph. A. MARTIN

The one-dimensional Burgers equation in the inviscid limit with white noise initial condition is revisited. The one- and two-point distributions of the Burgers field as well as the related distributions of shocks are obtained in closed analytical forms. In particular, the large distance behaviour of spatial correlations of the field is determined. Since higher-order distributions factorize in terms of the one- and two- point functions, our analysis provides an explicit and complete statistical description of this problem.


Sign in / Sign up

Export Citation Format

Share Document