scholarly journals Concentrically Braced Frames: European vs. North American Seismic Design Provisions

2017 ◽  
Vol 11 (1) ◽  
pp. 453-463 ◽  
Author(s):  
Silvia Costanzo ◽  
Landolfo Raffaele

A critical review of seismic design provisions for concentrically braced frames (CBFs) in both European and North American (i.e. US and Canadian) codes is presented in this paper. Indeed, even though those codes are based on capacity design philosophy, different requirements and different approaches are used to guarantee the hierarchy of resistances between dissipative and non-dissipative elements, thus leading different overall seismic performance. In detail, the main issues critically discussed are (i) the ductility classes and the correlated force-reduction factors; (ii) the structural analysis methods permitted by different codes; (iii) the modelling aspects of braces; (iv) the detailing rules for both dissipative (bracing members) and non-dissipative elements. Synoptic tables summarizing the corresponding assumptions and requirements in different codes are provided.

2010 ◽  
Vol 163-167 ◽  
pp. 211-221
Author(s):  
Wen Yuan Zhang ◽  
Constantin Christopoulos

To gain further insight into the seismic design of concentrically braced frames as defined by the Canadian and Chinese codes, a comparison of the main design requirements contained in each code is carried out in this paper. The comparison emphasizes on the differences existing in these two code provisions, and the reasons behind them. The issues that are examined include the seismic force resisting systems for braced frames, the height restrictions, the force transferred to the beams in chevron configurations, the slenderness ratios of the bracing members, the width-to-thickness ratios of the brace sections, and the influence of brace connections on the columns. Some additional issues that still remain undefined on the seismic response of these systems and some proposals for further studies are also discussed. It is concluded through this comparison that a number of modifications are still required in order to fully implement a capacity design approach of these systems in both codes.


2017 ◽  
Vol 137 ◽  
pp. 211-227 ◽  
Author(s):  
Onur Seker ◽  
Bulent Akbas ◽  
Pinar Toru Seker ◽  
Mahmoud Faytarouni ◽  
Jay Shen ◽  
...  

2020 ◽  
Vol 49 (15) ◽  
pp. 1619-1639
Author(s):  
Hayato Asada ◽  
Andrew D. Sen ◽  
Tao Li ◽  
Jeffrey W. Berman ◽  
Dawn E. Lehman ◽  
...  

1992 ◽  
Vol 19 (6) ◽  
pp. 1025-1031 ◽  
Author(s):  
R. G. Redwood ◽  
A. K. Jain

Extensive research into the inelastic seismic response of concentrically braced frames and their components has been carried out in the last two decades. This knowledge has now been incorporated into seismic design practice in several countries, notably the U.S.A., Canada, and New Zealand. In this paper, design specifications from these three countries, which derive largely from the same body of research, are compared. The basic design philosophy for concentrically braced steel frames, loading, and member detailing are examined. It is concluded that, in general, the Canadian specifications are in conformity with the available information and have many similar features to codes of the other countries. Significant differences exist in the classification of braced frames, between interstorey drift requirements, in the treatment of dual structural systems, and to a lesser extent in member detailing requirements. Some features of Canadian codes meriting review are identified. Key words: structural engineering, earthquakes, standards, steel, braced frame, ductility, concentric bracing, dual system.


Sign in / Sign up

Export Citation Format

Share Document