scholarly journals Study of Load Bearing Capacity of Profiled Steel Sheet Wall Subjected to Combined Bending and Vertical Compression in Electrostatic Precipitator

2014 ◽  
Vol 8 (1) ◽  
pp. 326-331 ◽  
Author(s):  
Dengfeng Wang ◽  
Yongfu Yu ◽  
Licheng Pan ◽  
Haijin Dai

For some electrostatic precipitators, profiled steel sheets are used as casing wall which is subjected to both bending and vertical compression. By nonlinear finite element method, the influences of structural parameters on load bearing capacity of profiled steel sheet wall were investigated. For the loading path, the uniform transversal pressure was applied firstly, and then the vertical compression was applied until the wall failed. The results indicate that the vertical compression resistance of profiled sheet decreases with the transversal load or the increasing sheet span. For certain sheet shape, the vertical compression resistance of profiled sheet decreases with the wall width increasing. The vertical resistance of the profiled sheet whose tensioned flanges are connected with the side columns is more than that whose compressed flanges are connected with the side columns. When the vertical compression resistance is calculated according to the buckling evaluation method of cold-form thin-walled steel member, the value is usually less than the solution from finite element method. Consequently, the load bearing capacity based on the related method of cold-form thin-walled steel member can be taken as a reference solution for the profiled steel sheet subjected to combined bending and vertical compression.

2018 ◽  
Vol 64 (4) ◽  
pp. 89-103
Author(s):  
A. Nesterenko ◽  
G. Stolpovskiy ◽  
M. Nesterenko

AbstractThe actual load-bearing capacity of elements of a building system can be calculated by dynamic parameters, in particular by resonant frequency and compliance. The prerequisites for solving such a problem by the finite element method (FEM) are presented in the article. First, modern vibration tests demonstrate high accuracy in determination of these parameters, which reflects reliability of the diagnosis. Secondly, most modern computational complexes do not include a functional for calculating the load-bearing capacity of an element according to the input values of resonance frequencies. Thirdly, FEM is the basis for development of software tools for automating the computation process. The article presents the method for calculating flexural stiffness and moment of inertia of a beam construction system by its own frequencies. The method includes calculation algorithm realizing the finite element method.


2020 ◽  
Vol 30 (4) ◽  
pp. 33-47
Author(s):  
Krzysztof Wierzbicki

Abstract The study presents an analysis of steel I-beam warping. The calculations were made for hot-rolled IPE200 hinged beams with different lengths. After determining load-bearing capacity using the GMNIA method, the beams were strengthened with bimoment restraints at each end. The changes in critical moment and load-bearing capacity were then evaluated. The study presents the manner in which the material and geometric imperfections have been determined. The GMNIA calculations were conducted using the Finite Element Method in Abaqus software. The results were then compared to results obtained with traditional methods and acquired from LT Beam software.


2017 ◽  
Vol 62 (1) ◽  
pp. 435-442 ◽  
Author(s):  
P. Golewski ◽  
J. Gajewski ◽  
T. Sadowski

Abstract Artificial neural networks [ANNs] are an effective method for predicting and classifying variables. This article presents the application of an integrated system based on artificial neural networks and calculations by the finite element method [FEM] for the optimization of geometry of a thin-walled element of an air structure. To ensure optimal structure, the structure’s geometry was modified by creating side holes and ribs, also with holes. The main criterion of optimization was to reduce the structure’s weight at the lowest possible deformation of the tested object. The numerical tests concerned a fragment of an elevator used in the “Bryza” aircraft. The tests were conducted for networks with radial basis functions [RBF] and multilayer perceptrons [MLP]. The calculations described in the paper are an attempt at testing the FEM - ANN system with respect to design optimization.


Sign in / Sign up

Export Citation Format

Share Document