abaqus software
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 96)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Lahis Souza de Assis ◽  
Matheus Fernandes Dal Sasso ◽  
Michèle Cristina Resende Farage ◽  
Flávia de Souza Bastos ◽  
Anne-Lise Beaucour

Abstract Concrete is a widespread material all over the world. Due to this material’s heterogeneity and structural complexity, predicting the behavior of concrete structures under extreme environmental conditions is a very challenging task. High temperatures lead to microstructural changes which affect the macrostructural performance. In this context, computational tools that allow the simulation of structures may assist the analysis, by reproducing varied situations of thermal and mechanical loading and boundary conditions. In order to contribute to this scenario, this study proposes a numerical methodology to simulate the thermomechanical behavior of concrete under temperature gradients, through inverse analyses and a user subroutine implemented in Abaqus software. Thermal loading effects were considered as loading data for a damage model. Experimental data available in the literature was adopted for adjustment and validation purposes. The preliminary results presented herein encourage further improvements so as to allow realistic simulations of such an important aspect of concrete’s behavior.


Author(s):  
Amir Mahmoud Zanganeh ◽  
Sina Ghaemi Khiavi ◽  
Bagher Mohammad Sadeghi ◽  
Mehdi Divandari

In the current research, the numerical simulations were done on 15 cylindrical lattice specimens under compressive stress at a constant strain rate using Abaqus software. The lattice cylinders have different strut thicknesses of 3, 4, and 5 mm, and with the fillets in the radiuses of 0.3, 0.6, 0.9, and 1.2 mm, respectively. The mechanical properties of the AlSi11Cu2 (Fe) aluminum alloy were used. The Mises stress distribution was evaluated to determine the effect of fillet radius on the lattice structure for the strut thickness of 3 mm. Also, the effective strain distribution of the lattice structure was investigated after different stages of deformation. After comparing the simulation results, it was shown that by applying fillets with a radius of 0.3 mm in lattice cylinders, the maximum energy absorption and maximum force can be achieved at the ultimate tensile strength (UTS) point. Also, the optimal strain can be obtained at the UTS point.


2021 ◽  
Vol 11 (3) ◽  
pp. 4-13
Author(s):  
Zulfat Sh. GALYAUTDINOV

Here is the description of fi nite elementmodels of joints between reinforced concrete slab and column, made in the SIMULIA ABAQUS software package. The variable parameters were the ratio of the sides of the column cmax/cmin and the ratio of the side of the column to the eff ective depth c/h0. The calculation is performed in a non-linear formulation. Finite elementmodels showed realistic behavior: a punching shear pyramid was detected. It was found a signifi cant unevenness in the distribution of tangential deformations, as well as the main compressive deformations of the concrete slab near the column. The nature of the formation and development of the punching shear pyramid depends on the value of the ratio of the sides of the column cmax/cmin and the ratio of the side of the column to the eff ective depth slab c/h0.


2021 ◽  
pp. 72-85
Author(s):  
L. V Stepanova

In this study coefficients of the multi-parameter Williams power series expansion for the stress field in the vicinity of the central crack in the rectangular plate and in the semi-circular notched disk under bending are obtained by the use of the finite element analysis. In SIMULIA Abaqus, the finite element analysis software, the numerical solutions for these two cracked geometries are found. The rectangular plate with the central crack has the geometry similar to the geometry used in the digital photoelasticity. Numerical simulations of the same cracked specimen as in the experimental photoelasticity method are performed. The numerical solutions obtained are utilized for the determination of the coefficients of the Williams series expansion. The higher-order coefficients are extracted from the finite element method calculations implemented in Simulia Abaqus software package and the outcomes are compared to experimental values. Determination of the coefficients of the terms of this series is performed using the least squares-based regression technique known as the over-deterministic method, for which stresses data obtained numerically in SIMULIA Abaqus software are taken as inputs. The plate with a small central crack has been considered either. This kind of the cracked specimen has been utilized for comparison of coefficients of the Williams series expansion obtained from the finite element analysis with the coefficients known from the theoretical solution based on the complex variable theory in plane elasticity. It is shown that the coefficients of the Williams series expansion match with good accuracy. The higher-order terms in the Williams series expansion for the semi-circular notch disk are found.


2021 ◽  
Vol 11 (6) ◽  
pp. 7853-7860
Author(s):  
A. A. Abdulhussein ◽  
M. H. Al-Sherrawi

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased by 41 to 77% when steel collars were used. The experimental results were in good agreement with the numerical analysis acquired with the ABAQUS software.


2021 ◽  
Vol 11 (24) ◽  
pp. 11741
Author(s):  
Hamed Dadkhah ◽  
Roohollah Kalatehjari ◽  
Mohsen Hajihassani ◽  
Mehdi Kharghani ◽  
Panagiotis G. Asteris

Blasting is an unavoidable activity in geotechnical engineering, road and tunnel construction, and mining and quarrying. However, this activity can expose the environment to various hazards that are challenging to control and, at the same time, critical for the safety of site workers, equipment, and surrounding structures. This research aims to evaluate the ability of sand–tire shred mixtures to reduce peak blast pressure, which is the leading cause of damage to underground structures under surface explosion. ABAQUS software is used to model the material behavior under explosion and is validated using the results of previous studies and an empirical equation. Different scenarios are created by using mixture layers with different thicknesses (2, 4, and 6 m) and tire shred contents (10%, 20%, and 30%) that are subjected to various surface explosion charges (100, 500, 1000, and 5000 kg). The thickness of the mixture layer is found to be directly related to the dissipation of explosion energy. However, the percentage of the rubber content in the mixture is only significant in reducing peak blast pressure when a thick enough mixture layer is used. The results confirm the adequate performance of the correctly chosen sand–tire shred mixtures in reducing peak blast pressure and protecting the underground structure from surface explosion hazards.


Author(s):  
Jae-Hyuk Choi ◽  
Wonbo Shim ◽  
Chul Hong Rhie ◽  
Woong-Ryeol Yu

Abstract Accurate prediction of the cure level of thermoset polymers is essential to simulate the thermomechanical behavior of polymeric thermoset sealants, which is strongly dependent on cure level. Conventional cure kinetics models, however, fail to accurately predict the cure levels of thermoset sealants subjected to a complex temperature program. Herein, we propose a new cure kinetics model that greatly enhances cure level predictability by considering temperature derivatives. The validity of our model was verified by simulating the thermomechanical behavior of a polymeric sealant using a user material subroutine (UMAT) of ABAQUS software. Experimental results from an appropriately designed thermomechanical test were compared with simulation results obtained from the UMAT.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7409
Author(s):  
Marcin Bochenski ◽  
Jaroslaw Gawryluk ◽  
Andrzej Teter

In this study, we discuss the effects of the diameter and position of a hole on the dynamic response of a thin-walled cantilever beam made of carbon-epoxy laminate. Eigen-frequencies and corresponding global and local eigen-modes were considered, where deformations of the beam wall were dominant, without significant deformation of the beam axis. The study was focused on the circumferentially uniform stiffness (CUS) beam configuration. The laminate layers were arranged as [90/15(3)/90/15(3)/90]T. The finite element method was employed for numerical tests, using the Abaqus software package. Moreover, a few numerical results of the structure’s behaviour, with and without a hole, were verified experimentally. The experimental eigen-frequencies and the corresponding modes were obtained using an experimental modal analysis, comprising the LMS system with modal hammer. We found that the size and location of the hole affected the eigen-frequencies and corresponding modes. Furthermore, even a small hole in a beam could significantly change the shape of its local modes. The numerical and experimental results were observed to have high qualitative compliance.


2021 ◽  
pp. 1-25
Author(s):  
Farzad Hejazi ◽  
Hojjat Mohammadi Esfahani
Keyword(s):  

2021 ◽  
Vol 1203 (2) ◽  
pp. 022062
Author(s):  
Birdean Calin Ioan ◽  
Cernescu Anghel ◽  
Faur Nicolae

Abstract The design of buildings envelopes is more elaborate than it has ever been. Starting from the design method of nodal space frames made of one layer of structure and covered in glass, this paper presents e new type of end-plate beam to beam connection. Specific to this is the fact that both end-plates are welded inside of the tubes, having a minimum gap between them of 2 mm. This will reduce considerably the in-surface and welding-induced end plates tolerances which appear at classical end-plate connections. Through the pre-tensioning of the bolts, a continuous contact surface is assured along the cross-sections of the hollow profiles. Several tests were run with the software Gas Win in order to establish the maximum capacity of the connection. This condition is achieved when the neutral axis goes out of the crosssection and the entire cross-section is compressed. Installation hand-holes were also considered. In order to get a better understanding about the force flow, an FEM analysis was run using the Abaqus software. A comparison between the results followed.


Sign in / Sign up

Export Citation Format

Share Document