scholarly journals Vertical Guided Bone Regeneration using Titanium-reinforced d-PTFE Membrane and Prehydrated Corticocancellous Bone Graft

2014 ◽  
Vol 8 (1) ◽  
pp. 194-200 ◽  
Author(s):  
Alessandro Cucchi ◽  
Paolo Ghensi

Guided bone regeneration (GBR) standard protocols call for filling the space underneath the membrane with autogenous bone or a mixture composed of autogenous bone particles and allogeneic bone tissue or heterologous biomaterials. This work describes the case of a GBR performed to restore a vertical bone defect with simultaneous placement of a dental implant in the posterior mandible that was carried out using a high density d-PTFE membrane and corticocancellous porcine-derived bone without the addition of any autogenous bone. Bone regeneration was assessed by histological analysis of a biopsy sample collected from the grafted site nine months after the surgery. Intraoral radiographs taken at follow-up visits showed complete maintenance of the peri-implant bone levels for up to two years after prosthesis delivery. The regenerated site successfully supported functional loading of the implant. The present case report suggests that the use of a heterologous bone substitute alone to restore a vertical defect in a GBR procedure can be as effective as the standard protocol, while avoiding the drawbacks associated with a second surgical site opening.

2015 ◽  
Vol 41 (4) ◽  
pp. 445-448 ◽  
Author(s):  
Dong-Woon Lee ◽  
Kyeong-Taek Kim ◽  
Yon-Soo Joo ◽  
Mi-Kyung Yoo ◽  
Jeoung-A Yu ◽  
...  

The aim of this study was to elucidate the role of 2 types of collagen membranes (cross-linked vs noncross-linked) used in conjunction with autogenous or allogenic bone followed by xenogeneic bone particles for dehiscence defect around implants in humans. Experimental groups were divided into 2 groups: Group CL (cross-linked, Ossix Plus, n = 24 implants, 16 patients) and Group NCL (noncross-linked, Bio-Gide, n = 25 implants, 18 patients). At the time of implant insertion and uncovery surgery, measurements of the dehiscence bony height, width, and surface area were made. Before applying the membrane to defects, guided bone regeneration was performed. Because it is difficult to measure the degree of exposure, early exposed cases were excluded from the result analysis. The mean percentage gain of the dehiscence defect and the mean marginal bone reduction value of follow-up radiograph did not show statistically significant differences between the 2 groups. Both membranes exhibited satisfactory results on dehiscence defects. As a result, our authors concluded the success of guided bone regeneration was performed simultaneously for dehiscence defects around the implant, regardless whether collagen membranes were cross-linked or noncross-linked.


2015 ◽  
Vol 21 (6) ◽  
pp. 705-715 ◽  
Author(s):  
M. Fantini ◽  
F. De Crescenzio ◽  
L. Ciocca ◽  
F. Persiani

Purpose – The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement. Design/methodology/approach – Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used. Findings – For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery. Originality/value – A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.


2019 ◽  
Author(s):  
Ye Wu ◽  
Jiaming Chen ◽  
Fuping Xie ◽  
Huanhuan Liu ◽  
Gang Niu ◽  
...  

Abstract Background: The aim of this study was to evaluate the clinical outcome of autotransplantation of mature third molars to fresh molar extraction sockets using 3D replicas. Methods: Ten patients underwent teeth autotransplantation with or without GBR. We observed the mobility, percussion, radiography examination, the probing depth and the masticatory function of the transplanted teeth during two years following up, which were transplanted into fresh molar sockets by using 3D replicas, and GBR when it is necessary. Results: The average extra-oral time of donor tooth had been shortened to 1.65 min when used the 3D replica. Some probing depth of the transplanted tooth were deeper than 3 mm at 4 or 5 weeks temporarily. And one patient felt slight sensitive when chewing with soft food at 4 weeks, then disappeared. The clinical examination of the autotransplantation teeth during one year follow-up showed no sign of failure. Conclusions: The tooth autotransplantation using 3D replica with or without GBR is an effective method which can reduce the extra-oral time of the donor teeth and may result in less failure.


2015 ◽  
Vol 16 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Gian Battista Greco ◽  
Lorenzo Cinci ◽  
Laura Pieri

ABSTRACT Aim The present work describes a horizontal ridge augmentation in which a titanium mesh was preshaped by adapting it to a stereolithographic model of the patient's jaw that was fabricated from CT scans. Background Guided bone regeneration (GBR) involves covering the augmentation site with a long-lasting barrier to protect it from the invasion of surrounding soft tissues. Among barriers, titanium meshes may provide a successful outcome, but the intraoperatory time needed to shape them is a disadvantage. Case description The 54-year-old patient, missing the right mandibular second bicuspid, first molar, and second molar, had her atrophic ridge augmented with a 30:70 mixture of autogenous bone and equine, enzyme-deantigenic collagenpreserved bone substitute. Two conical implants were inserted concomitantly in the second bicuspid and first molar positions, and the site was protected with the preshaped mesh. Four months later, the titanium mesh was retrieved, a bone sample was collected, and histological and histomorphometric analyses were performed. Provisional and definitive prostheses were then delivered, and follow-up controls were performed for up to 24 months. Conclusion Preshaping the mesh on a model of the patient's mandible shortened the surgical time and enabled faster mesh placement. Two years after surgery, the implants were perfectly functional, and the bone width was stable over time as shown by radiographic controls. Histological analysis of the bone sample showed the heterologous biomaterial to be biocompatible and undergoing advanced remodeling and replacement with newly formed bone. Clinical significance Preshaping a titanium mesh over a stereolithographic model of the patient's jaw allowed for a significant reduction of the intraoperative time and may be therefore, advisable in routine practice. How to cite this article Di Stefano DA, Greco GB, Cinci L, Pieri L. Horizontal-guided Bone Regeneration using a Titanium Mesh and an Equine Bone Graft. J Contemp Dent Pract 2015;16(2):154-162.


2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
GulnarDara Sethna ◽  
RajeshPrabhakar Gaikwad ◽  
Rajat Nahar ◽  
SatishSudhakar Gadai ◽  
NoopurSubhash Narayane

Sign in / Sign up

Export Citation Format

Share Document