scholarly journals Horizontal-guided Bone Regeneration using a Titanium Mesh and an Equine Bone Graft

2015 ◽  
Vol 16 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Gian Battista Greco ◽  
Lorenzo Cinci ◽  
Laura Pieri

ABSTRACT Aim The present work describes a horizontal ridge augmentation in which a titanium mesh was preshaped by adapting it to a stereolithographic model of the patient's jaw that was fabricated from CT scans. Background Guided bone regeneration (GBR) involves covering the augmentation site with a long-lasting barrier to protect it from the invasion of surrounding soft tissues. Among barriers, titanium meshes may provide a successful outcome, but the intraoperatory time needed to shape them is a disadvantage. Case description The 54-year-old patient, missing the right mandibular second bicuspid, first molar, and second molar, had her atrophic ridge augmented with a 30:70 mixture of autogenous bone and equine, enzyme-deantigenic collagenpreserved bone substitute. Two conical implants were inserted concomitantly in the second bicuspid and first molar positions, and the site was protected with the preshaped mesh. Four months later, the titanium mesh was retrieved, a bone sample was collected, and histological and histomorphometric analyses were performed. Provisional and definitive prostheses were then delivered, and follow-up controls were performed for up to 24 months. Conclusion Preshaping the mesh on a model of the patient's mandible shortened the surgical time and enabled faster mesh placement. Two years after surgery, the implants were perfectly functional, and the bone width was stable over time as shown by radiographic controls. Histological analysis of the bone sample showed the heterologous biomaterial to be biocompatible and undergoing advanced remodeling and replacement with newly formed bone. Clinical significance Preshaping a titanium mesh over a stereolithographic model of the patient's jaw allowed for a significant reduction of the intraoperative time and may be therefore, advisable in routine practice. How to cite this article Di Stefano DA, Greco GB, Cinci L, Pieri L. Horizontal-guided Bone Regeneration using a Titanium Mesh and an Equine Bone Graft. J Contemp Dent Pract 2015;16(2):154-162.

2018 ◽  
Vol 32 (5) ◽  
pp. 456-466 ◽  
Author(s):  
Mohammed Awadh Binsalah ◽  
Sundar Ramalingam ◽  
Mohammed Alkindi ◽  
Nasser Nooh ◽  
Khalid Al-Hezaimi

2012 ◽  
Vol 38 (S1) ◽  
pp. 533-537 ◽  
Author(s):  
Maria A. Peñarrocha ◽  
Jose A. Vina ◽  
Laura Maestre ◽  
David Peñarrocha-Oltra

The aim is to describe bilateral vertical ridge augmentation with intraoral block grafts and guided bone regeneration in the posterior mandible in preparation for implant placement. A 61-year-old woman, edentulous in the posterior mandible, presented for implant rehabilitation. The radiographic study showed 3 to 6 mm of bone height from the ridge to the mandibular canal. Autogenous bone block grafts from the chin and the mandibular ramus, harvested with ultrasonics, were used to augment the alveolar ridge. To reduce resorption, the grafts were covered with particulate alloplastic material and a collagen membrane. Delayed implants were placed 6 months after vertical augmentation, and 3 months later implants were loaded with a fixed prosthesis. A temporary sensory complication occurred, but 12 months after implant loading, there were no failures. In this case report block bone grafting was a feasible option to vertically augment the alveolar ridge in the posterior mandible.


2021 ◽  
Vol 11 (13) ◽  
pp. 6115
Author(s):  
Jeong-Kui Ku ◽  
Yeong Kon Jeong ◽  
Yong-Suk Choi ◽  
Taeyeong Kim ◽  
In-Woo Cho ◽  
...  

Wound dehiscence is the most frequent complication after ridge augmentation and causes postoperative infection, inadequate bone healing, or graft failure. In the oral cavity, conservative treatment for dehiscence is difficult to maintain until secondary healing occurs because of its normal flora, dynamic masticatory muscle movement, and humid environment. This paper reports an effective conservative method using an oral wound dressing material with an omnivec splint and presents three wound dehiscence cases: (1) autogenous tooth bone graft material with a collagen membrane, with dehiscence occurring at postoperative 5 days. (2) Autogenous bone graft covering titanium mesh, with dehiscence occurring at postoperative three weeks. The mesh was removed after 10 weeks with histologic analysis. (3) Autogenous bone and autogenous tooth bone graft covering a titanium mesh, with dehiscence occurring at postoperative 1 week. The exposed titanium mesh was maintained for 6 months after the graft. All cases achieved secondary healing and acceptable outcomes for a dental implant by conservative treatment without infection after the dehiscence after ridge augmentation.


2013 ◽  
Vol 39 (4) ◽  
pp. 455-462 ◽  
Author(s):  
Saravanan Pushparajan ◽  
Ramakrishnan Thiagarajan ◽  
Ambalavanan Namasi ◽  
Pamela Emmadi ◽  
Harshini Saravanan

The purpose of the study was to evaluate radiologically the efficacy of guided bone regeneration using composite bone graft (autogenous bone graft and anorganic bovine bone graft [Bio-Oss]) along with resorbable collagen membrane (BioMend Extend) in the augmentation of Seibert's class I ridge defects in maxilla. Bone width was evaluated using computerized tomography at day 0 and at day 180 at 2 mm, 4 mm, and 6 mm from the crest. There was a statistically significant increase in bone width between day 0 and day 180 at 2 mm, 4 mm, and 6 mm from the crest. The results of the study demonstrated an increase in bone width of Seibert's class I ridge defects in the maxilla of the study patients.


2019 ◽  
Vol 7 (3) ◽  
pp. 77
Author(s):  
Danilo Alessio Di Stefano ◽  
Gianbattista Greco ◽  
Enrico Gherlone

One of the most often used bone augmentation techniques is the guided bone regeneration procedure. The authors report the case of a 75-year-old man with an atrophic right posterior mandible who underwent bone augmentation through guided bone regeneration with a preshaped titanium mesh adapted on a stereolithographic model of the patient’s jaw. The graft volume was simulated with a light-curing resin. The actual site was grafted with a mixture of autogenous and equine-derived bone. Five months later, the mesh was retrieved, three cylindrical implants were positioned, and a bone biopsy was collected for histomorphometric analysis. A provisional prosthesis was delivered three and a half months later. Definitive rehabilitation was accomplished after one additional month. The graft allowed for effective bone formation (newly formed bone, residual biomaterial, and medullar spaces were, respectively, 39%, 10%, and 51% of the core volume). The patient has functioned successfully throughout six and a half years of follow-up. Using the preshaped titanium mesh in association with the enzyme-treated equine bone substitute provided effective bone regeneration.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
F. Briguglio ◽  
D. Falcomatà ◽  
S. Marconcini ◽  
L. Fiorillo ◽  
R. Briguglio ◽  
...  

Several techniques have been proposed for bone regeneration in patients with atrophic ridges. Nowadays, GBR represents the gold standard, and it allows obtaining sufficient bone volumes for a correct implant-prosthetic rehabilitation. Our goal is to perform a systematic review of the literature on the use of titanium meshes in GBR in order to evaluate the reliability of the procedure, the regeneration obtained, and the failures. Furthermore, we will evaluate the success and survival rate of the inserted implants. The selected articles concern vertical and/or horizontal regeneration of the alveolar ridge using titanium grids, in association or not with biomaterials, before and simultaneously with implant placement. Six articles were selected for the present review, including a total of 139 patients, 156 sites, and 303 implants. Titanium grids in combination with autogenous bone were used in 2 cases, 5 in combination with a mixture of autogenous bone and bone substitutes. The overall survival and success rates of implants were 98.3% and 85.25%, respectively. In conclusion, our review shows how the use of titanium mesh represented a predictable method for the rehabilitation of complex atrophic sites.


Sign in / Sign up

Export Citation Format

Share Document