scholarly journals Validation of a Simplified, Portable Cardiopulmonary Gas Exchange System for Submaximal Exercise Testing~!2009-10-25~!2010-01-09~!2010-03-17~!

2010 ◽  
Vol 4 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Andrew D. Miller ◽  
Paul R. Woods ◽  
Thomas P. Olson ◽  
Minelle L. Hulsebus ◽  
Kathy A. O'Malley ◽  
...  
1980 ◽  
Vol 99 (6) ◽  
pp. 772-778 ◽  
Author(s):  
J.V. Nixon ◽  
M.C. Hillert ◽  
William Shapiro ◽  
Thomas C. Smitherman

2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Martin Burtscher ◽  
Michael Philadelphy ◽  
Hannes Gatterer ◽  
Johannes Burtscher ◽  
Rudolf Likar

2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


1988 ◽  
Vol 15 (2) ◽  
pp. 239 ◽  
Author(s):  
CB Osmond ◽  
V Oja ◽  
A Laisk

The consequences of acclimation from shade to sun and vice versa for regulated photosynthetic metabolism were examined in H. annuus. A rapid-response gas exchange system was used to assess changes in carboxylation-related parameters (mesophyll conductance, assimilatory charge and CO2 capacity) and to analyse oscillations in CO2 fixation following transfer to high CO2 concentration as a function of intercellular CO2 concentration and light intensity. Data showed a two- to threefold change in all carboxylation-related parameters during acclimation in either direction. Dynamic regulation of carboxylation, indicated by changes in oscillatory response as a function of CO2 concentration at light saturation, remained unchanged, consistent with concerted regulation of ribulose-1,5-bisphosphate carboxylase-oxygenase during acclimation. However, the light dependency of oscillations changed during acclimation from shade to sun, and the range of oscillation was closely tied to the maximum rate of steady-state photosynthesis at CO2 saturation. These data imply that changes in the light-absorbing and electron transport components of the photosynthetic apparatus underlie the shift in regulatory behaviour during acclimation.


1975 ◽  
Vol 39 (3) ◽  
pp. 405-410 ◽  
Author(s):  
D. G. Davies ◽  
R. E. Dutton

The avian respiratory system is a crosscurrent gas exchange system. One of the aspects of this type of gas exchange system is that end-expired PCO2 is greater than arterial PCO2, the highest possible value being equal to mixed venous PCO2. We made steady-state measurements of arterial, mixed venous, and end-expired PCO2 in anesthetized, spontaneously breathing chickens during inhalation of room air or 4–8% CO2. We found end-expired PCO2 to be higher than both arterial and mixed venous PCO2, the sign of the differences being such as to oppose passive diffusion. The observation that end-expired PCO2 was higher than arterial PCO2 can be explained on the basis of crosscurrent gas exchange. However, the observation that end-expired PCO2 exceeded mixed venous PCO2 must be accounted for by some other mechanism. The positive end-expired to mixed venous PCO2 gradients can be explained if it is postulated that the charged membrane mechanism suggested by Gurtner et al. (Respiration Physiol. 7: 173–187, 1969) is present in the avian lung.


1987 ◽  
Vol 7 (4) ◽  
pp. 7-10 ◽  
Author(s):  
Mitsuo Oguchi ◽  
Koji Otsubo ◽  
Keiji Nitta ◽  
Shigeki Hatayama

Sign in / Sign up

Export Citation Format

Share Document