nocturnal transpiration
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Carlos Suárez ◽  
Fernando Casanoves ◽  
Marie Ange Ngo Bieng ◽  
Luz Marina Melgarejo ◽  
Julio A. Di Rienzo ◽  
...  

AbstractIn this study, we measured diurnal patterns of sap flow (Vs) in cacao trees growing in three types of agroforestry systems (AFs) that differ in the incident solar radiation they receive. We modeled the relationship of Vs with several microclimatic characteristics of the AFs using mixed linear models. We characterized microclimatic variables that may have an effect on diurnal patterns of sap flow: air relative humidity, air temperature, photosynthetically active radiation and vapor pressure deficit. Overall, our model predicted the differences between cacao Vs in the three different AFs, with cacao plants with dense Musaceae plantation and high mean diurnal incident radiation (HPAR) displaying the highest differences compared to the other agroforestry arrangements. The model was also able to predict situations such as nocturnal transpiration in HPAR and inverse nocturnal sap flows indicative of hydraulic redistribution in the other AFs receiving less incident radiation. Overall, the model we present here can be a useful and cost-effective tool for predicting transpiration and water use in cacao trees, as well as for managing cacao agroforestry systems in the Amazon rainforest.


2020 ◽  
Vol 56 ◽  
pp. 126800
Author(s):  
Ju Wu ◽  
Haixuan Liu ◽  
Jiyou Zhu ◽  
Lan Gong ◽  
Lijuan Xu ◽  
...  

2020 ◽  
Vol 24 (2) ◽  
pp. 793-807
Author(s):  
Ryan S. Padrón ◽  
Lukas Gudmundsson ◽  
Dominik Michel ◽  
Sonia I. Seneviratne

Abstract. Nocturnal water loss (NWL) from the surface into the atmosphere is often overlooked because of the absence of solar radiation to drive evapotranspiration and the measuring difficulties involved. However, growing evidence suggests that NWL – and particularly nocturnal transpiration – represents a considerable fraction of the daily values. Here we provide a global overview of the characteristics of NWL based on latent heat flux estimates from the FLUXNET2015 dataset, as well as from simulations of global climate models. Eddy-covariance measurements at 99 sites indicate that NWL represents 6.3 % of total evapotranspiration on average. There are six sites where NWL is higher than 15 %; these sites comprise mountain forests with considerable NWL during winter that is related to snowy and windy conditions. Higher temperature, vapor pressure deficit, wind speed, soil moisture, and downward longwave radiation are related to higher NWL, although this is not consistent across all of the sites. On the other hand, the global multi-model mean of terrestrial NWL is 7.9 % of the total evapotranspiration. The spread of the model ensemble, however, is greater than 15.8 % over half of the land grid cells. Finally, NWL is projected to increase everywhere with an average of 1.8 %, although with a substantial inter-model spread. Changes in NWL contribute substantially to projected changes in total evapotranspiration. Overall, this study highlights the relevance of water loss during the night and opens avenues to explore its influence on the water cycle and the climate system under present and future conditions.


2020 ◽  
Vol 47 (12) ◽  
pp. 1117 ◽  
Author(s):  
Rémy Schoppach ◽  
Thomas R. Sinclair ◽  
Walid Sadok

In wheat, night-time transpiration rate (TRN) could amount to 14–55% of daytime transpiration rate (TR), depending on the cultivar and environment. Recent evidence suggests that TRN is much less responsive to soil drying than daytime TR, and that such ‘wasteful’ water losses would increase the impact of drought on yields. In contrast, other evidence indicates that pre-dawn, circadian increases in TRN may enable enhanced radiation use efficiency, resulting in increased productivity under water deficit. Until now, there have been no attempts to evaluate these seemingly conflicting hypotheses in terms of their impact on yields in any crop. Here, using the Mediterranean environment of Tunisia as a case study, we undertook a simulation modelling approach using SSM-Wheat to evaluate yield outcomes resulting from these TRN trait modifications. TRN represented 15% of daytime TR-generated yield penalties of up to 20%, and these worsened when TRN was not sensitive to soil drying TR. For the same TRN level (15%), simulating a predawn increase in TRN alleviated yield penalties, leading to yield gains of up to 25%. Overall, this work suggests that decreasing TRN but increasing pre-dawn circadian control would be a viable breeding target to increase drought tolerance in a Mediterranean environment.


2019 ◽  
Author(s):  
Ryan S. Padrón ◽  
Lukas Gudmundsson ◽  
Dominik Michel ◽  
Sonia I. Seneviratne

Abstract. Nocturnal water loss (NWL) from the surface into the atmosphere is often overlooked because of the absence of solar radiation to drive evapotranspiration and the measuring difficulties involved. However, there is growing evidence that suggests NWL – and particularly nocturnal transpiration – represents a considerable fraction of the daily values. Here we provide a global overview of the characteristics of NWL based on latent heat flux estimates from the FLUXNET2015 dataset, as well as from simulations of global climate models. Eddy-covariance measurements at 99 sites indicate that on average NWL represents 6.3 % of total evapotranspiration. There are six sites where NWL is higher than 15 %; these are mountain forests with considerable NWL during winter related to snowy and windy conditions. Higher vapor pressure deficit, wind speed and soil moisture are related to higher NWL, although this is not consistent across all sites. On the other hand, the global multi-model mean of terrestrial NWL is 7.9 % of total evapotranspiration. The spread of the model ensemble, however, is greater than 20 % over 70 % of the land area. Finally, the multi-model mean of future projections indicates an increase of NWL everywhere by an average of 1.8 %, but the spread between models at individual locations is often twice as large at least. Overall, this study highlights the relevance of water loss during the night and opens the door to explore its influence on the water cycle and the climate system under present and future conditions.


2019 ◽  
Vol 124 (6) ◽  
pp. 969-978 ◽  
Author(s):  
Walid Sadok ◽  
Rémy Schoppach

Abstract Background and Aims The ability of wheat genotypes to save water by reducing their transpiration rate (TR) at times of the day with high vapour pressure deficit (VPD) has been linked to increasing yields in terminal drought environments. Further, recent evidence shows that reducing nocturnal transpiration (TRN) could amplify water saving. Previous research indicates that such traits involve a root-based hydraulic limitation, but the contribution of hormones, particularly auxin and abscisic acid (ABA), has not been explored to explain the shoot–root link. In this investigation, based on physiological, genetic and molecular evidence gathered on a mapping population, we hypothesized that root auxin accumulation regulates whole-plant water use during both times of the day. Methods Eight double-haploid lines were selected from a mapping population descending from two parents with contrasting water-saving strategies and root hydraulic properties. These spanned the entire range of slopes of TR responses to VPD and TRN encountered in the population. We examined daytime/night-time auxin and ABA contents in the roots and the leaves in relation to hydraulic traits that included whole-plant TR, plant hydraulic conductance (KPlant), slopes of TR responses to VPD and leaf-level anatomical traits. Key Results Root auxin levels were consistently genotype-dependent in this group irrespective of experiments and times of the day. Daytime root auxin concentrations were found to be strongly and negatively correlated with daytime TR, KPlant and the slope of TR response to VPD. Night-time root auxin levels significantly and negatively correlated with TRN. In addition, daytime and night-time leaf auxin and ABA concentrations did not correlate with any of the examined traits. Conclusions The above results indicate that accumulation of auxin in the root system reduces daytime and night-time water use and modulates plant hydraulic properties to enable the expression of water-saving traits that have been associated with enhanced yields under drought.


2019 ◽  
Author(s):  
Walid Sadok ◽  
Rémy Schoppach

AbstractThe ability of wheat genotypes to save water by reducing their transpiration rate (TR) under times of the day with high vapour pressure deficit (VPD) has been linked to increasing yields in terminal drought environments. Further, recent evidence shows that reducing nocturnal transpiration (TRN) could amplify water-saving. Previous research indicates that such traits involve a root-based hydraulic limitation, but the contribution of hormones, particularly auxin and abscisic acid (ABA) has not been explored to explain the shoot-root link. In this investigation, based on physiological, genetic and molecular evidence gathered on a mapping population, we hypothesized that root auxin accumulation regulates whole-plant water use during both times of the day. Eight double-haploid lines were selected from a mapping population descending from two parents with contrasted water-saving strategies and root hydraulic properties. These spanned the entire range of slopes of TR responses to VPD and TRN encountered in the population. On those lines, we examined daytime/night-time auxin and ABA contents in the roots and the leaves in relation to hydraulic traits that included whole-plant TR, plant hydraulic conductance (KPlant), slopes of TR responses to VPD and leaf-level anatomical traits. Root auxin levels were consistently genotype-dependent in this group irrespective of experiments and times of the day. Daytime root auxin concentrations were found to be strongly and negatively correlated with daytime TR, KPlant and the slope of TR response to VPD. Night-time root auxin levels significantly and negatively correlated with TRN. In addition, daytime and night-time leaf auxin and ABA concentrations did not correlate with any of the examined traits. The above results indicate that accumulation of auxin in the root system reduces daytime and night-time water use and modulates plant hydraulic properties to enable the expression of water-saving traits that have been associated with enhanced yields under drought.


Sign in / Sign up

Export Citation Format

Share Document