Gas-blood PCO2 gradients during avian gas exchange

1975 ◽  
Vol 39 (3) ◽  
pp. 405-410 ◽  
Author(s):  
D. G. Davies ◽  
R. E. Dutton

The avian respiratory system is a crosscurrent gas exchange system. One of the aspects of this type of gas exchange system is that end-expired PCO2 is greater than arterial PCO2, the highest possible value being equal to mixed venous PCO2. We made steady-state measurements of arterial, mixed venous, and end-expired PCO2 in anesthetized, spontaneously breathing chickens during inhalation of room air or 4–8% CO2. We found end-expired PCO2 to be higher than both arterial and mixed venous PCO2, the sign of the differences being such as to oppose passive diffusion. The observation that end-expired PCO2 was higher than arterial PCO2 can be explained on the basis of crosscurrent gas exchange. However, the observation that end-expired PCO2 exceeded mixed venous PCO2 must be accounted for by some other mechanism. The positive end-expired to mixed venous PCO2 gradients can be explained if it is postulated that the charged membrane mechanism suggested by Gurtner et al. (Respiration Physiol. 7: 173–187, 1969) is present in the avian lung.

2007 ◽  
Vol 7 ◽  
pp. 134-140 ◽  
Author(s):  
N. E. Grulke ◽  
E. Paoletti ◽  
R. L. Heath

We tested the effect of daytime chronic moderate ozone (O3) exposure, short-term acute exposure, and both chronic and acute O3exposure combined on nocturnal transpiration in California black oak and blue oak seedlings. Chronic O3exposure (70 ppb for 8 h/day) was implemented in open-top chambers for either 1 month (California black oak) or 2 months (blue oak). Acute O3exposure (~1 h in duration during the day, 120–220 ppb) was implemented in a novel gas exchange system that supplied and maintained known O3concentrations to a leaf cuvette. When exposed to chronic daytime O3exposure, both oaks exhibited increased nocturnal transpiration (without concurrent O3exposure) relative to unexposed control leaves (1.8× and 1.6×, black and blue oak, respectively). Short-term acute and chronic O3exposure did not further increase nocturnal transpiration in either species. In blue oak previously unexposed to O3, short-term acute O3exposure significantly enhanced nocturnal transpiration (2.0×) relative to leaves unexposed to O3. California black oak was unresponsive to (only) short-term acute O3exposure. Daytime chronic and/or acute O3exposures can increase foliar water loss at night in deciduous oak seedlings.


1976 ◽  
Vol 41 (3) ◽  
pp. 302-309 ◽  
Author(s):  
M. Meyer ◽  
H. Worth ◽  
P. Scheid

We have conducted two experimental series in the chicken in order to study CO2 exchange in the parabronchial lungs of birds.In the first series, the animals were artifically ventilated and end-expired PCO2, PE'CO2,was measured and compared with mixed venous PCO2, PVCO2. On the average, PECO2 exceeded PVCO2 by 2.8 Torr. In the second series, rebreathing was used to investigate the mechanism of this positive (PE'-PV)CO2 difference.Lung gas PCO2 was found to equilibrate with PVCO2 if both CO2 and O2 exchange in the lung was abolished during rebreathing. Only if O2 uptake continued, we observed a positive gas-to-mixed venous blood PCO2 difference. The results suggest that positive gas-blood PCO2 differences both during rebreathing and steady-state ventilation are brought about by the Haldane effect.Model calculations show that in the homogeneous avian lung, unlike in the alveolar lung, the Haldane effect can produce positive (PE'-PV)CO2 differences during steady-state breathing due to the peculiarities of the crosscurrent arrangement and parabronchial ventilation and blood perfusion.


1988 ◽  
Vol 15 (2) ◽  
pp. 239 ◽  
Author(s):  
CB Osmond ◽  
V Oja ◽  
A Laisk

The consequences of acclimation from shade to sun and vice versa for regulated photosynthetic metabolism were examined in H. annuus. A rapid-response gas exchange system was used to assess changes in carboxylation-related parameters (mesophyll conductance, assimilatory charge and CO2 capacity) and to analyse oscillations in CO2 fixation following transfer to high CO2 concentration as a function of intercellular CO2 concentration and light intensity. Data showed a two- to threefold change in all carboxylation-related parameters during acclimation in either direction. Dynamic regulation of carboxylation, indicated by changes in oscillatory response as a function of CO2 concentration at light saturation, remained unchanged, consistent with concerted regulation of ribulose-1,5-bisphosphate carboxylase-oxygenase during acclimation. However, the light dependency of oscillations changed during acclimation from shade to sun, and the range of oscillation was closely tied to the maximum rate of steady-state photosynthesis at CO2 saturation. These data imply that changes in the light-absorbing and electron transport components of the photosynthetic apparatus underlie the shift in regulatory behaviour during acclimation.


1995 ◽  
Vol 79 (3) ◽  
pp. 1032-1038 ◽  
Author(s):  
L. Hornby ◽  
A. L. Coates ◽  
L. C. Lands

Cardiac output (CO) during exercise can be determined noninvasively by using the indirect Fick CO2-rebreathing technique. CO2 measurements for this technique are usually performed with an infrared analyzer (IA) or mass spectrometer (MS). However, IA CO2 measurements are susceptible to underreading in the face of high O2 concentrations because of collision broadening. We compared an IA (Ametek model CD-3A) with a MS (Marquette model MGA-1100) to see the effect this would have on mixed venous PCO2 (PVCO2) and CO measurements. After calibration with room air and a gas mixture of 5% CO2–12% O2–83% N2, both devices were tested with three different gas mixtures of CO2 in O2. For each gas mixture, IA gave lower CO2 values than did the MS (4.1% CO2: IA, 3.85 +/- 0.01% and MS, 4.13 +/- 0.01%; 9.2% CO2: IA, 8.44 +/- 0.07% and MS, 9.19 +/- 0.01%; 13.8% CO2: IA, 12.57 +/- 0.15% and MS, 13.82 +/- 0.01%). Warming and humidifying the gases did not alter the results. The IA gave lower values than did the MS for eight other medical gases in lower concentrations of O2 (40–50%). Equilibrium and exponential rebreathing procedures were performed. Values determined by the IA were > 10% higher than those determined by the MS for both rebreathing methods. We conclude that all IAs must be checked for collision broadening if they are to be used in environments where the concentration of O2 is > 21%. If collision broadening is present, then either a special high O2-CO2 calibration curve must be constructed, or the IA should not be used for both arterial PCO2 and PVCO2 estimates because it may produce erroneously low PVCO2 values, with resultant overestimation of CO.


1987 ◽  
Vol 7 (4) ◽  
pp. 7-10 ◽  
Author(s):  
Mitsuo Oguchi ◽  
Koji Otsubo ◽  
Keiji Nitta ◽  
Shigeki Hatayama

1981 ◽  
Vol 59 (12) ◽  
pp. 2568-2576 ◽  
Author(s):  
Jerry W. Leverenz

Net photosynthesis, transpiration, and stomatal and residual conductances for current-year shoots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) were measured in an open gas exchange system. Terminal shoots of branches and branchlets had larger stomatal and residual conductances, and net photosynthetic and transpiration rates than neighboring lateral shoots under conditions which did not limit gas exchange. The differences between terminal and lateral shoots occurred in both exposed and shaded branches and in trees of different dominance classes. For most of the study, current-year lateral shoots were lighter green than terminal shoots. There were no significant differences in shoot water potential or in the microenvironment between terminal and lateral shoots.Effects of apical control on gas exchange rates were strong in shoots subtending the dominant terminal shoot. These effects were not apparent four whorls from the terminal shoot, in agreement with the hypothesis that apical control can not be exerted at long distances from terminal shoots.


2010 ◽  
Vol 4 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Andrew D. Miller ◽  
Paul R. Woods ◽  
Thomas P. Olson ◽  
Minelle L. Hulsebus ◽  
Kathy A. O'Malley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document