scholarly journals Image Fusion based on Cross Bilateral and Rolling Guidance Filter through Weight Normalization

2020 ◽  
Vol 13 (1) ◽  
pp. 51-61
Author(s):  
Dawa C. Lepcha ◽  
Bhawna Goyal ◽  
Ayush Dogra

Introduction: Image Fusion is the method which conglomerates complimentary information from the source images to a single fused image . There are numerous applications of image fusion in the current scenario such as in remote sensing, medical diagnosis, machine vision system, astronomy, robotics, military units, biometrics, and surveillance. Objective: In this case multi-sensor or multi-focus devices capture images of the particular scene which are complementary in the context of information content to each other. The details from complementary images are combined through the process of fusion into a single image by applying the algorithmic formulas. The main goal of image fusion is to fetch more and proper information from the primary or source images to the fused image by minimizing the loss of details of the images and by doing so to decrease the artifacts in the final image. Methodology: In this paper, we proposed a new method to fuse the images by applying a cross bilateral filter for gray level similarities and geometric closeness of the neighboring pixels without smoothing edges. Then, the detailed images obtained by subtracting the cross bilateral filter image output from original images are being filtered through the rolling guidance filter for scale aware operation. In particular, it removes the small-scale structures while preserving the other contents of the image and successfully recovers the edges of the detailed images. Finally, the images have been fused using a weighted computed algorithm and weight normalization. Results: The results have been validated and compared with various existing state-of-the-art methods both subjectively and quantitatively. Conclusion: It was observed that the proposed method outperforms the existing methods of image fusion.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zongping Li ◽  
Wenxin Lei ◽  
Xudong Li ◽  
Tingting Liao ◽  
Jianming Zhang

Image fusion is to effectively enhance the accuracy, stability, and comprehensiveness of information. Generally, infrared images lack enough background details to provide an accurate description of the target scene, while visible images are difficult to detect radiation under adverse conditions, such as low light. People hoped that the richness of image details can be improved by using effective fusion algorithms. In this paper, we propose an infrared and visible image fusion algorithm, aiming to overcome some common defects in the process of image fusion. Firstly, we use fast approximate bilateral filter to decompose the infrared image and visible image to obtain the small-scale layers, large-scale layer, and base layer. Then, the fused base layer is obtained based on local energy characteristics, which avoid information loss of traditional fusion rules. The fused small-scale layers are acquired by selecting the absolute maximum, and the fused large-scale layer is obtained by summation rule. Finally, the fused small-scale layers, large-scale layer, and base layer are merged to reconstruct the final fused image. Experimental results show that our method retains more detailed appearance information of the fused image and achieves good results in both qualitative and quantitative evaluations.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


2020 ◽  
Author(s):  
Kapil Joshi ◽  
N.K. Joshi ◽  
Manoj Diwakar ◽  
Himanshu Gupta ◽  
Dev Baloni

2007 ◽  
Vol 3 (S247) ◽  
pp. 152-157 ◽  
Author(s):  
Oddbjørn Engvold

AbstractSeismology has become a powerful tool in studies of the magnetic structure of solar prominences and filaments. Reversely, analytical and numerical models are guided by available information about the spatial and thermodynamical structure of these enigmatic structures. The present invited paper reviews recent observational results on oscillations and waves as well as details about small-scale structures and dynamics of prominences and filaments.


2009 ◽  
Vol 399 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Jacco Th. van Loon ◽  
Keith T. Smith ◽  
Iain McDonald ◽  
Peter J. Sarre ◽  
Stephen J. Fossey ◽  
...  

1999 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Y. I. Galperin ◽  
J. M. Bosqued ◽  
R. A. Kovrazhkin ◽  
A. G. Yahnin

Sign in / Sign up

Export Citation Format

Share Document