scholarly journals Path Planning and Obstacle Avoidance for Mobile Robots in a Dynamic Environment

2014 ◽  
Vol 6 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Liping Sun ◽  
Yonglong Luo ◽  
Xintao Ding ◽  
Longlong Wu
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuexi Zhang ◽  
Jiajun Lai ◽  
Dongliang Xu ◽  
Huaijun Li ◽  
Minyue Fu

As the basic system of the rescue robot, the SLAM system largely determines whether the rescue robot can complete the rescue mission. Although the current 2D Lidar-based SLAM algorithm, including its application in indoor rescue environment, has achieved much success, the evaluation of SLAM algorithms combined with path planning for indoor rescue has rarely been studied. This paper studies mapping and path planning for mobile robots in an indoor rescue environment. Combined with path planning algorithm, this paper analyzes the applicability of three SLAM algorithms (GMapping algorithm, Hector-SLAM algorithm, and Cartographer algorithm) in indoor rescue environment. Real-time path planning is studied to test the mapping results. To balance path optimality and obstacle avoidance, A ∗ algorithm is used for global path planning, and DWA algorithm is adopted for local path planning. Experimental results validate the SLAM and path planning algorithms in simulated, emulated, and competition rescue environments, respectively. Finally, the results of this paper may facilitate researchers quickly and clearly selecting appropriate algorithms to build SLAM systems according to their own demands.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Wang ◽  
Ming Wang ◽  
Yong Guan ◽  
Xiaojuan Li

Obstacle avoidance is a key performance of mobile robots. However, its experimental verification is rather difficult, due to the probabilistic behaviors of both the robots and the obstacles. This paper presents the Markov Decision Process based probabilistic formal models for three obstacle-avoidance strategies of a mobile robot in an uncertain dynamic environment. The models are employed to make analyses in PRISM, and the correctness of the analysis results is verified by MATLAB simulations. Finally, the minimum time and the energy consumption are determined by further analyses in PRISM, which prove to be useful in finding the optimal strategy. The present work provides a foundation for the probabilistic formal verification of more complicated obstacle-avoidance strategies.


Sign in / Sign up

Export Citation Format

Share Document