autonomous mobile robots
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 157)

H-INDEX

35
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Artem E. Starkov ◽  
Leonid B. Sokolinsky

This paper presents a two-dimensional mathematical model of compound eye vision. Such a model is useful for solving navigation issues for autonomous mobile robots on the ground plane. The model is inspired by the insect compound eye that consists of ommatidia, which are tiny independent photoreception units, each of which combines a cornea, lens, and rhabdom. The model describes the planar binocular compound eye vision, focusing on measuring distance and azimuth to a circular feature with an arbitrary size. The model provides a necessary and sufficient condition for the visibility of a circular feature by each ommatidium. On this basis, an algorithm is built for generating a training data set to create two deep neural networks (DNN): the first detects the distance, and the second detects the azimuth to a circular feature. The hyperparameter tuning and the configurations of both networks are described. Experimental results showed that the proposed method could effectively and accurately detect the distance and azimuth to objects.


2022 ◽  
Vol 12 (1) ◽  
pp. 2-25
Author(s):  
Masahiro Shibata ◽  
Masaki Ohyabu ◽  
Yuichi Sudo ◽  
Junya Nakamura ◽  
Yonghwan Kim ◽  
...  

2022 ◽  
Vol 31 (1) ◽  
pp. 357-372
Author(s):  
Yung-Hsiang Chen ◽  
Yung-Yue Chen ◽  
Shi-Jer Lou ◽  
Chiou-Jye Huang

2021 ◽  
Vol 2129 (1) ◽  
pp. 012018
Author(s):  
R J Musridho ◽  
H Hasan ◽  
H Haron ◽  
D Gusman ◽  
M A Mohammad

Abstract In autonomous mobile robots, Simultaneous Localization and Mapping (SLAM) is a demanding and vital topic. One of two primary solutions of SLAM problem is FastSLAM. In terms of accuracy and convergence, FastSLAM is known to degenerate over time. Previous work has hybridized FastSLAM with a modified Firefly Algorithm (FA), called unranked Firefly Algorithm (uFA), to optimize the accuracy and convergence of the robot and landmarks position estimation. However, it has not shown the performance of the accuracy and convergence. Therefore, this work is done to present both mentioned performances of FastSLAM and uFA-FastSLAM to see which one is better. The result of the experiment shows that uFA-FastSLAM has successfully improved the accuracy (in other words, reduced estimation error) and the convergence consistency of FastSLAM. The proposed uFA-FastSLAM is superior compared to conventional FastSLAM in estimation of landmarks position and robot position with 3.30 percent and 7.83 percent in terms of accuracy model respectively. Furthermore, the proposed uFA-FastSLAM also exhibits better performances compared to FastSLAM in terms of convergence consistency by 93.49 percent and 94.20 percent for estimation of landmarks position and robot position respectively.


Author(s):  
Noor Abdul Khaleq Zghair ◽  
Ahmed S. Al-Araji

<span lang="EN-US">Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability.</span>


Author(s):  
Leonid B. Sokolinsky ◽  
Artem E. Starkov

This paper presents a two-dimensional mathematical model of compound eye vision. Such a model is useful for solving navigation issues for autonomous mobile robots on the ground plane. The model is inspired by the insect compound eye that consists of ommatidia, which are tiny independent photoreception units, each of which combines a cornea, lens, and rhabdom. The model describes the planar binocular compound eye vision, focusing on measuring distance and azimuth to a circular feature with an arbitrary size. The model provides a necessary and sufficient condition for the visibility of a circular feature by each ommatidium. On this basis, an algorithm is built for generating a training data set to create two deep neural networks (DNN): the first detects the distance, and the second detects the azimuth to a circular feature. The hyperparameter tuning and the configurations of both networks are described. Experimental results showed that the proposed method could effectively and accurately detect the distance and azimuth to objects.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7830
Author(s):  
Paweł Stączek ◽  
Jakub Pizoń ◽  
Wojciech Danilczuk ◽  
Arkadiusz Gola

The contemporary market creates a demand for continuous improvement of production, service, and management processes. Increasingly advanced IT technologies help designers to meet this demand, as they allow them to abandon classic design and design-testing methods in favor of techniques that do not require the use of real-life systems and thus significantly reduce the costs and time of implementing new solutions. This is particularly important when re-engineering production and logistics processes in existing production companies, where physical testing is often infeasible as it would require suspension of production for the testing period. In this article, we showed how the Digital Twin technology can be used to test the operating environment of an autonomous mobile robot (AMR). In particular, the concept of the Digital Twin was used to assess the correctness of the design assumptions adopted for the early phase of the implementation of an AMR vehicle in a company’s production hall. This was done by testing and improving the case of a selected intralogistics task in a potentially “problematic” part of the shop floor with narrow communication routes. Three test scenarios were analyzed. The results confirmed that the use of digital twins could accelerate the implementation of automated intralogistics systems and reduce its costs.


Sign in / Sign up

Export Citation Format

Share Document