Study on characteristics of schottky temperature detector based on metal/n-ZnO/n-Si structures

2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.

2011 ◽  
Vol 197-198 ◽  
pp. 328-332
Author(s):  
Li Chao Feng ◽  
Ning Xie ◽  
Wen Zhu Shao ◽  
Yu Sheng Cui ◽  
Liang Zhen

MoSi2and SiC ceramics were prepared by traditional powder metallurgy method. A novel ceramic thermocouple (CTC) used in the high temperature and high corrosion environment was assembled by SiC as the cathode and MoSi2as the anode. The thermo-emf of CTC was tested from 25 °C to 1600 °C in air. The results show that there is a simple relationship between the thermo-emf of CTC and the temperature. By holding temperature for 70 h at 1500 °C, the deviation of thermo-emf is ±0.37%, and better than 0.75% which is the criteria of industry thermocouple. And also the response characteristics of CTC were analyzed.


2010 ◽  
Vol 18 (13) ◽  
pp. 14245 ◽  
Author(s):  
Jun-long Kou ◽  
Jing Feng ◽  
Liang Ye ◽  
Fei Xu ◽  
Yan-qing Lu

Sign in / Sign up

Export Citation Format

Share Document