high temperature measurement
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhangwei Ma ◽  
Jintao Chen ◽  
Heming Wei ◽  
Liang Zhang ◽  
Zhifeng Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3794
Author(s):  
Filippo Piccinini ◽  
Giovanni Martinelli ◽  
Antonella Carbonaro

During the COVID-19 pandemic, there has been a significant increase in the use of non-contact infrared devices for screening the body temperatures of people at the entrances of hospitals, airports, train stations, churches, schools, shops, sports centres, offices, and public places in general. The strong correlation between a high body temperature and SARS-CoV-2 infection has motivated the governments of several countries to restrict access to public indoor places simply based on a person’s body temperature. Negating/allowing entrance to a public place can have a strong impact on people. For example, a cancer patient could be refused access to a cancer centre because of an incorrect high temperature measurement. On the other hand, underestimating an individual’s body temperature may allow infected patients to enter indoor public places where it is much easier for the virus to spread to other people. Accordingly, during the COVID-19 pandemic, the reliability of body temperature measurements has become fundamental. In particular, a debated issue is the reliability of remote temperature measurements, especially when these are aimed at identifying in a quick and reliable way infected subjects. Working distance, body–device angle, and light conditions and many other metrological and subjective issues significantly affect the data acquired via common contactless infrared point thermometers, making the acquisition of reliable measurements at the entrance to public places a challenging task. The main objective of this work is to sensitize the community to the typical incorrect uses of infrared point thermometers, as well as the resulting drifts in measurements of body temperature. Using several commercial contactless infrared point thermometers, we performed four different experiments to simulate common scenarios in a triage emergency room. In the first experiment, we acquired several measurements for each thermometer without measuring the working distance or angle of inclination to show that, for some instruments, the values obtained can differ by 1 °C. In the second and third experiments, we analysed the impacts of the working distance and angle of inclination of the thermometers, respectively, to prove that only a few cm/degrees can cause drifts higher than 1 °C. Finally, in the fourth experiment, we showed that the light in the environment can also cause changes in temperature up to 0.5 °C. Ultimately, in this study, we quantitatively demonstrated that the working distance, angle of inclination, and light conditions can strongly impact temperature measurements, which could invalidate the screening results.


2021 ◽  
Vol 881 ◽  
pp. 77-85
Author(s):  
Dong Yang Lei ◽  
Yu Feng Sun ◽  
Yu Qing Xue ◽  
Guang Yan Zhao

Thin film thermocouple (TFTC) is widely used in high temperature measurement, which is of short response time, less heat residual and integrated structure. Due to the ultra-thin structure of TFTC, the interfacial diffusion has a great influence on its reliability when exposed to high temperature environment, which leads to its performance degradation. Taking thermocouple on the turbine blade as research object, the parallel diffusion model of multilayer thermocouple is proposed based on Fick’s law. The reliability model of the protective layer, the sensitive layer and the insulating layer are established in the basis of the parallel diffusion model. According to the logical correlation among the multilayer films of TFTC, the TTF model of TFTC is given. Finally, an example of reliability model based on multilayer diffusion is simulated by Monte Carlo method, which demonstrates the feasibility of the method and model.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 234
Author(s):  
Zhe Zhang ◽  
Baijie Xu ◽  
Min Zhou ◽  
Weijia Bao ◽  
Xizhen Xu ◽  
...  

Over decades, fiber-optic temperature sensors based on conventional single-mode fibers (SMF) have been demonstrated with either high linearity and stability in a limited temperature region or poor linearity and thermal hysteresis in a high-temperature measurement range. For high-temperature measurements, isothermal annealing is typically necessary for the fiber-optic sensors, aiming at releasing the residual stress, eliminating the thermal hysteresis and, thus, improving the high-temperature measurement linearity and stability. In this article, an annealing-free fiber-optic high-temperature (1100 °C) sensor based on a diaphragm-free hollow-core fiber (HCF) Fabry-Perot interferometer (FPI) is proposed and experimentally demonstrated. The proposed sensor exhibits an excellent thermal stability and linearity (R2 > 0.99 in a 100–1100 °C range) without the need for high-temperature annealing. The proposed sensor is extremely simple in preparation, and the annealing-free property can reduce the cost of sensor production significantly, which is promising in mass production and industry applications.


Sign in / Sign up

Export Citation Format

Share Document