Boundary Layer Flow and Cattaneo-Christov Heat Flux of a Nonlinear Stretching Sheet with a Suspended CNT

2019 ◽  
Vol 9 (4) ◽  
pp. 494-503
Author(s):  
S. Shakunthala ◽  
M.M. Nandeppanavar

Background: In this article the Boundary layer flow and Cattaneo-Christov Heat flux of nonlinear stretching sheet in a suspended carbon nanotube is analyzed. Methods: The governing classical PDE’s are changing into ODE’s using the similarity transformation method. This boundary value problem is solved by using numerical method known as Runge-Kutta fourth order method with effective shooting technique. Presently in this analysis , the flow, velocity and heat transfer characteristics for different heat transferphysical parameters such as nanofluid (ϕ), suction parameter (N>0), heat flux parameter (β) and Prandtl number (Pr) are studied for two cases i.e., single Wall Carbon Nanotube (SWCNT) and Multiwall Carbon Nanotube (MWCNT) respectively. Results: Our results are in good agreement within a limiting condition comparing with previously published results. This study signifies that practical applications in science and engineering fields for example in functional ceramics, nano metals for energy and environmental applications. Conclusion: A theoretical study of boundary layer flow and Catteneo-Christove heat flux is carried out. In this study some of the important findings are collected as follows: 1. The result of nanoparticle volume fraction f and suction parameter N shows that, as increasing f it increases the flow, velocity and temperature while as increasing N which increases the flow and temperature but decreases the velocity at boundary layer. 2. A comparison result is plotted which is an excellent agreement with previously published results. 3. As increasing the Prandtl number and relaxation time of heat flux parameter in the thermal boundary layer which decreases the temperature of thermal boundary layer. 4. Effect of relaxation time of heat flux is same for both local skin friction and local nusselt number i.e. increasing.

2021 ◽  
Vol 10 (2) ◽  
pp. 172-185
Author(s):  
Golbert Aloliga ◽  
Yakubu Ibrahim Seini ◽  
Rabiu Musah

In this current paper, an investigation has been conducted on the magnetohydrodynamic boundary layer flow of non-Newtonian Casson fluids on magnetized sheet with an exponentially stretching sheet. The similarity approach has been used to transform the governing models for Casson fluid to ordinary differential equations. We presented numerical results for momentum, energy and concentration equation parameters. Effects of the magnetized sheet and varying all the emerged parameters on the flow of Casson fluid with respect to the friction between the fluid and the surface, temperature and concentration are presented in tables. As a result of the induced magnetization of the sheet, the thickness of the thermal boundary layer has been enhanced. This behaviour brings a considerable reduction to the heat transfer. The induced magnetized sheet has a similar influence on the skin friction, Nusselt number and the Sherwood number. We however proposed incorporation of magnetized surfaces in MHD flows for controlling the flow rate of the fluid and heat transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document