Recent Patents on Biosafety Strategies of Selectable Marker Genes in Genetically Modified Crops

2014 ◽  
Vol 6 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Yiming Jiang ◽  
Xiaoning Hu ◽  
Haiying Huang
2002 ◽  
Vol 38 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Suprasanna Penna ◽  
László Sági ◽  
Rony Swennen

2005 ◽  
Vol 22 (4) ◽  
pp. 287-294
Author(s):  
Hiromi Higo ◽  
Kayo Tsuruya ◽  
Hironori Mano ◽  
Kana Hasegawa ◽  
Yuzo Minobe

2001 ◽  
Vol 28 (3) ◽  
pp. 241 ◽  
Author(s):  
Hui-Juan Lu ◽  
Xue-Rong Zhou ◽  
Zhu-Xun Gong ◽  
Narayana M. Upadhyaya

Currently employed transformation systems require selectable marker genes encoding antibiotic or herbicide resistance, along with the gene of interest (GOI), to select transformed cells from among a large population of untransformed cells. The continued presence of these selectable markers, especially in food crops such as rice (Oryza sativa L.), is of increasing public concern. Techniques based on DNA recombination and Agrobacterium-mediated co-transformation with two binary vectors in a single or two different Agrobacterium strains, or with super-binary vectors carrying two sets of T-DNA border sequences (twin T-DNA vectors), have been employed by researchers to produce selectable marker-free (SMF) transgenic progeny. We have developed a double right-border (DRB) binary vector carrying two copies of T-DNA right-border (RB) sequences flanking a selectable marker gene, followed by a GOI and one copy of the left border sequence. Two types of T-DNA inserts, one initiated from the first RB containing both the selectable gene and the GOI, and the other from the second RB containing only the GOI, were expected to be produced and integrated into the genome. In the subsequent generation, these inserts could segregate away from each other, allowing the selection of the progeny with only the GOI. We tested this vector using two selectable marker genes and successfully obtained progeny plants in which the second selectable marker gene segregated away from the first. Using the DRB binary vector system, we recovered SMF transgenic lines containing a rice ragged stunt virus (RRSV)-derived synthetic resistance gene in the rice cultivars Jarrah and Xiu Shui. Approximately 36–64% of the primary transformants of these cultivars yielded SMF progeny. Among SMF Jarrah transgenic progeny <50% of plants contained the RRSV transgene. Thus, we have developed an efficient vector for producing SMF plants that allows straightforward cloning of any GOIs in comparison with the published ‘twin T-DNA’ vectors.


2007 ◽  
Vol 16 (3) ◽  
pp. 261-280 ◽  
Author(s):  
Koreen Ramessar ◽  
Ariadna Peremarti ◽  
Sonia Gómez-Galera ◽  
Shaista Naqvi ◽  
Marian Moralejo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document