Multi-Objective Evolutionary Algorithm Based on Two Reference Points Decomposition and Historical Information Prediction

Author(s):  
Er-chao Li ◽  
Kang-wei Li

Aims: The main purpose of this paper is to solve the issues that the poor quality of offspring solutions generated by traditional evolutionary operators, and that the inability of the evolutionary algorithm based on decomposition to better solve the multi-objective optimization problems (MOPs) with complicated Pareto fronts (PFs). Background: For some complicated multi-objective optimization problems, the effect of the multi-objective evolutionary algorithm based on decomposition (MOEA/D) is poor. For specific complicated problems, there is less research on improving the algorithm's performance by setting and adjusting the direction vector in the decomposition-based evolutionary algorithm. And considering that in the existing algorithms, the optimal solutions are selected according to the selection strategy in the selection stage, without considering if it could produce the better solutions in the stage of individual generation to achieve the optimization effect faster. As a result of these, a multi-objective evolutionary algorithm that is based on two reference points decomposition and historical information prediction is proposed. Objective: In order to verify the feasibility of the proposed strategy, the F-series test function with complicated PFs is used as the test function to simulate the proposed strategy. Method: Firstly, the evolutionary operator based on Historical Information Prediction (EHIP) is used to generate better offspring solutions to improve the convergence of the algorithm; secondly, the decomposition strategy based on ideal point and nadir point is used to select solutions to solve the MOPs with complicated PFs, and the decomposition method with augmentation term is used to improve the population diversity when selecting solutions according to the nadir point. Finally, the proposed algorithm is compared to several popular algorithms by the F-series test function, and the comparison is made according to the corresponding performance metrics. Result: The performance of the algorithm is improved obviously compared with the popular algorithms after using the EHIP. When the decomposition method with augmentation term is added, the performance of the proposed algorithm is better than the algorithm with only the EHIP on the whole. However, the overall performance is better than the popular algorithms. Conclusion and Prospect: The experimental results show that the overall performance of the proposed algorithm is superior to the popular algorithms. The EHIP can produce better quality offspring solutions, and the decomposition strategy based on two reference points can well solve the MOPs with complicated PFs. This paper mainly demonstrates the theory without testing the practical problems. The following research mainly focuses on the application of the proposed algorithm to the practical problems such as robot path planning.

2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2020 ◽  
Author(s):  
Tomohiro Harada ◽  
Misaki Kaidan ◽  
Ruck Thawonmas

Abstract This paper investigates the integration of a surrogate-assisted multi-objective evolutionary algorithm (MOEA) and a parallel computation scheme to reduce the computing time until obtaining the optimal solutions in evolutionary algorithms (EAs). A surrogate-assisted MOEA solves multi-objective optimization problems while estimating the evaluation of solutions with a surrogate function. A surrogate function is produced by a machine learning model. This paper uses an extreme learning surrogate-assisted MOEA/D (ELMOEA/D), which utilizes one of the well-known MOEA algorithms, MOEA/D, and a machine learning technique, extreme learning machine (ELM). A parallelization of MOEA, on the other hand, evaluates solutions in parallel on multiple computing nodes to accelerate the optimization process. We consider a synchronous and an asynchronous parallel MOEA as a master-slave parallelization scheme for ELMOEA/D. We carry out an experiment with multi-objective optimization problems to compare the synchronous parallel ELMOEA/D with the asynchronous parallel ELMOEA/D. In the experiment, we simulate two settings of the evaluation time of solutions. One determines the evaluation time of solutions by the normal distribution with different variances. On the other hand, another evaluation time correlates to the objective function value. We compare the quality of solutions obtained by the parallel ELMOEA/D variants within a particular computing time. The experimental results show that the parallelization of ELMOEA/D significantly reduces the computational time. In addition, the integration of ELMOEA/D with the asynchronous parallelization scheme obtains higher quality of solutions quicker than the synchronous parallel ELMOEA/D.


Author(s):  
Eliot Rudnick-Cohen

Abstract Multi-objective decision making problems can sometimes involve an infinite number of objectives. In this paper, an approach is presented for solving multi-objective optimization problems containing an infinite number of parameterized objectives, termed “infinite objective optimization”. A formulation is given for infinite objective optimization problems and an approach for checking whether a Pareto frontier is a solution to this formulation is detailed. Using this approach, a new sampling based approach is developed for solving infinite objective optimization problems. The new approach is tested on several different example problems and is shown to be faster and perform better than a brute force approach.


2014 ◽  
Vol 22 (2) ◽  
pp. 189-230 ◽  
Author(s):  
Miqing Li ◽  
Shengxiang Yang ◽  
Jinhua Zheng ◽  
Xiaohui Liu

The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators—the minimum edge, degree, and ETCD—with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.


Author(s):  
Haijuan Zhang ◽  
Gai-Ge Wang

AbstractMulti-objective problems in real world are often contradictory and even change over time. As we know, how to find the changing Pareto front quickly and accurately is challenging during the process of solving dynamic multi-objective optimization problems (DMOPs). In addition, most solutions obey different distributions in decision space and the performance of NSGA-III when dealing with DMOPs should be further improved. In this paper, centroid distance is proposed and combined into NSGA-III with transfer learning together for DMOPs, called TC_NSGAIII. Centroid distance-based strategy is regarded as a prediction method to prevent some inappropriate individuals through measuring the distance of the population centroid and reference points. After the distance strategy, transfer learning is used for generating an initial population using the past experience. To verify the effectiveness of our proposed algorithm, NSGAIII, Tr_NSGAIII (NSGA-III combining with transfer learning only), Ce_NSGAIII (NSGA-III combining with centroid distance only), and TC_NSGAIII are compared. Seven state-of-the-art algorithms have been used for comparison on CEC 2015 benchmarks. Besides, transfer learning and centroid distance are regarded as a dynamic strategy, which is incorporated into three static algorithms, and the performance improvement is measured. What’s more, twelve benchmark functions from CEC 2015 and eight sets of parameters in each function are used in our experiments. The experimental results show that the performance of algorithms can be greatly improved through the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document