scholarly journals Comparison of synchronous and asynchronous parallelization of extreme surrogate-assisted multi-objective evolutionary algorithm

2020 ◽  
Author(s):  
Tomohiro Harada ◽  
Misaki Kaidan ◽  
Ruck Thawonmas

Abstract This paper investigates the integration of a surrogate-assisted multi-objective evolutionary algorithm (MOEA) and a parallel computation scheme to reduce the computing time until obtaining the optimal solutions in evolutionary algorithms (EAs). A surrogate-assisted MOEA solves multi-objective optimization problems while estimating the evaluation of solutions with a surrogate function. A surrogate function is produced by a machine learning model. This paper uses an extreme learning surrogate-assisted MOEA/D (ELMOEA/D), which utilizes one of the well-known MOEA algorithms, MOEA/D, and a machine learning technique, extreme learning machine (ELM). A parallelization of MOEA, on the other hand, evaluates solutions in parallel on multiple computing nodes to accelerate the optimization process. We consider a synchronous and an asynchronous parallel MOEA as a master-slave parallelization scheme for ELMOEA/D. We carry out an experiment with multi-objective optimization problems to compare the synchronous parallel ELMOEA/D with the asynchronous parallel ELMOEA/D. In the experiment, we simulate two settings of the evaluation time of solutions. One determines the evaluation time of solutions by the normal distribution with different variances. On the other hand, another evaluation time correlates to the objective function value. We compare the quality of solutions obtained by the parallel ELMOEA/D variants within a particular computing time. The experimental results show that the parallelization of ELMOEA/D significantly reduces the computational time. In addition, the integration of ELMOEA/D with the asynchronous parallelization scheme obtains higher quality of solutions quicker than the synchronous parallel ELMOEA/D.

2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


Author(s):  
Er-chao Li ◽  
Kang-wei Li

Aims: The main purpose of this paper is to solve the issues that the poor quality of offspring solutions generated by traditional evolutionary operators, and that the inability of the evolutionary algorithm based on decomposition to better solve the multi-objective optimization problems (MOPs) with complicated Pareto fronts (PFs). Background: For some complicated multi-objective optimization problems, the effect of the multi-objective evolutionary algorithm based on decomposition (MOEA/D) is poor. For specific complicated problems, there is less research on improving the algorithm's performance by setting and adjusting the direction vector in the decomposition-based evolutionary algorithm. And considering that in the existing algorithms, the optimal solutions are selected according to the selection strategy in the selection stage, without considering if it could produce the better solutions in the stage of individual generation to achieve the optimization effect faster. As a result of these, a multi-objective evolutionary algorithm that is based on two reference points decomposition and historical information prediction is proposed. Objective: In order to verify the feasibility of the proposed strategy, the F-series test function with complicated PFs is used as the test function to simulate the proposed strategy. Method: Firstly, the evolutionary operator based on Historical Information Prediction (EHIP) is used to generate better offspring solutions to improve the convergence of the algorithm; secondly, the decomposition strategy based on ideal point and nadir point is used to select solutions to solve the MOPs with complicated PFs, and the decomposition method with augmentation term is used to improve the population diversity when selecting solutions according to the nadir point. Finally, the proposed algorithm is compared to several popular algorithms by the F-series test function, and the comparison is made according to the corresponding performance metrics. Result: The performance of the algorithm is improved obviously compared with the popular algorithms after using the EHIP. When the decomposition method with augmentation term is added, the performance of the proposed algorithm is better than the algorithm with only the EHIP on the whole. However, the overall performance is better than the popular algorithms. Conclusion and Prospect: The experimental results show that the overall performance of the proposed algorithm is superior to the popular algorithms. The EHIP can produce better quality offspring solutions, and the decomposition strategy based on two reference points can well solve the MOPs with complicated PFs. This paper mainly demonstrates the theory without testing the practical problems. The following research mainly focuses on the application of the proposed algorithm to the practical problems such as robot path planning.


2014 ◽  
Vol 22 (2) ◽  
pp. 189-230 ◽  
Author(s):  
Miqing Li ◽  
Shengxiang Yang ◽  
Jinhua Zheng ◽  
Xiaohui Liu

The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in space where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based evolutionary algorithm (ETEA) to solve multi-objective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically, in ETEA, four strategies are introduced: (1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; (2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; (3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; (4) Three diversity indicators—the minimum edge, degree, and ETCD—with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.


2016 ◽  
Vol 21 (20) ◽  
pp. 5975-5987 ◽  
Author(s):  
Hongfeng Wang ◽  
Yaping Fu ◽  
Min Huang ◽  
George Huang ◽  
Junwei Wang

2021 ◽  
Vol 26 (2) ◽  
pp. 28
Author(s):  
Mercedes Perez-Villafuerte ◽  
Laura Cruz-Reyes ◽  
Nelson Rangel-Valdez ◽  
Claudia Gomez-Santillan ◽  
Héctor Fraire-Huacuja

Many real-world optimization problems involving several conflicting objective functions frequently appear in current scenarios and it is expected they will remain present in the future. However, approaches combining multi-objective optimization with the incorporation of the decision maker’s (DM’s) preferences through multi-criteria ordinal classification are still scarce. In addition, preferences are rarely associated with a DM’s characteristics; the preference selection is arbitrary. This paper proposes a new hybrid multi-objective optimization algorithm called P-HMCSGA (preference hybrid multi-criteria sorting genetic algorithm) that allows the DM’s preferences to be incorporated in the optimization process’ early phases and updated into the search process. P-HMCSGA incorporates preferences using a multi-criteria ordinal classification to distinguish solutions as good and bad; its parameters are determined with a preference disaggregation method. The main feature of P-HMCSGA is the new method proposed to associate preferences with the characterization profile of a DM and its integration with ordinal classification. This increases the selective pressure towards the desired region of interest more in agreement with the DM’s preferences specified in realistic profiles. The method is illustrated by solving real-size multi-objective PPPs (project portfolio problem). The experimentation aims to answer three questions: (i) To what extent does allowing the DM to express their preferences through a characterization profile impact the quality of the solution obtained in the optimization? (ii) How sensible is the proposal to different profiles? (iii) How much does the level of robustness of a profile impact the quality of final solutions (this question is related with the knowledge level that a DM has about his/her preferences)? Concluding, the proposal fulfills several desirable characteristics of a preferences incorporation method concerning these questions.


Author(s):  
Wei Zheng ◽  
Yanyan Tan ◽  
Meng Gao ◽  
Wenzhen Jia ◽  
Qiang Wang ◽  
...  

In this paper, a novel modified algorithm based on MOEA/D, abbreviated as mMOEA/D, is proposed for well solving the multi-objective optimization problems. Our proposed mMOEA/D inherits from MOEA/D. In mMOEA/D, a novel elastic weight vectors design method is introduced and adopted to make those weight vectors spread more widely. On the other hand, a flexible and efficient trail DE operator is designed and used in mMOEA/D for further enhancing the performance of MOEA/D. Three groups of experimental studies are carried out. Proposed mMOEA/D is compared with the four state-the-art multi-objective optimization evolutionary algorithms on solving the multi-objective optimization problems with many objectives, and the other is that mMOEA/D is compared with MOEA/D-DE, an improved version of MOEA/D, on solving the multi-objective optimization problems with complicated PS shapes. The versions of mMOEA/D with the improvement of weight vector and DE operator are compared with MOEA/D-DE to solve multi-objective optimization problems at last. The experimental results show that mMOEA/D performs the best on almost all test instances. In other words, our proposed modification of MOEA/D is effective.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 509
Author(s):  
Qing Wang ◽  
Xiaoshuang Wang ◽  
Haiwei Luo ◽  
Jian Xiong

To certain degree, multi-objective optimization problems obey the law of symmetry, for instance, the minimum of one objective function corresponds to the maximum of another objective. To provide effective support for the multi-objective operation of the aerospace product shell production line, this paper studies multi-objective aerospace shell production scheduling problems. Firstly, a multi-objective optimization model for the production scheduling of aerospace product shell production lines is established. In the presented model, the maximum completion time and the cost of production line construction are optimized simultaneously. Secondly, to tackle the characteristics of discreteness, non-convexity and strong NP difficulty of the multi-objective problem, a knowledge-driven multi-objective evolutionary algorithm is designed to solve the problem. In the proposed approach, structural features of the scheduling plan are extracted during the optimization process and used to guide the subsequent optimization process. Finally, a set of test instances is generated to illustrate the addressed problem and test the proposed approach. The experimental results show that the knowledge-driven multi-objective evolutionary algorithm designed in this paper has better performance than the two classic multi-objective optimization methods.


Sign in / Sign up

Export Citation Format

Share Document