A Differential Evolution Algorithm for Multi-objective Sparse Reconstruction

Author(s):  
Xiaopei Zhu ◽  
Li Yan ◽  
Boyang Qu ◽  
Pengwei Wen ◽  
Zhao Li

Aims: This paper proposes a differential evolution algorithm to solve the multi-objective sparse reconstruction problem (DEMOSR). Background: The traditional method is to introduce the regularization coefficient and solve this problem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded as a multi-objective optimization problem about sparsity and measurement error (two contradictory objectives). Objective: A differential evolution algorithm to solve multi-objective sparse reconstruction problem (DEMOSR) in sparse signal reconstruction and the practical application. Methods: First of all, new individuals are generated through tournament selection mechanism and differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strategy is introduced. Results: In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse reconstruction of magnetic resonance images. Conclusions: According to the experimental results of DEMOSR in sparse signal reconstruction and the practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is effective in sparse signal and image reconstruction.

2021 ◽  
Vol 18 (2) ◽  
pp. 69
Author(s):  
María Guadalupe Martínez Peñaloza ◽  
Efrén Mezura Montes ◽  
Alicia Morales Reyes ◽  
Hernán E. Aguirre

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhou-zhou Liu ◽  
Shi-ning Li

To reconstruct compressed sensing (CS) signal fast and accurately, this paper proposes an improved discrete differential evolution (IDDE) algorithm based on fuzzy clustering for CS reconstruction. Aiming to overcome the shortcomings of traditional CS reconstruction algorithm, such as heavy dependence on sparsity and low precision of reconstruction, a discrete differential evolution (DDE) algorithm based on improved kernel fuzzy clustering is designed. In this algorithm, fuzzy clustering algorithm is used to analyze the evolutionary population, which improves the pertinence and scientificity of population learning evolution while realizing effective clustering. The differential evolutionary particle coding method and evolutionary mechanism are redefined. And the improved fuzzy clustering discrete differential evolution algorithm is applied to CS reconstruction algorithm, in which signal with unknown sparsity is considered as particle coding. Then the wireless sensor networks (WSNs) sparse signal is accurately reconstructed through the iterative evolution of population. Finally, simulations are carried out in the WSNs data acquisition environment. Results show that compared with traditional reconstruction algorithms such as StOMP, the reconstruction accuracy of the algorithm proposed in this paper is improved by 36.4-51.9%, and the reconstruction time is reduced by 15.1-31.3%.


Sign in / Sign up

Export Citation Format

Share Document