Full-Scale Operating Experience with a Biological Phosphorus and Nitrogen Removal System Treating High-Strength Potato Processing Wastewater

2002 ◽  
Vol 2002 (7) ◽  
pp. 235-246
Author(s):  
Stephen O. Meininger ◽  
Silas W. Givens ◽  
Dale L. Johnson ◽  
Glenn T. Daigger
2001 ◽  
Vol 2001 (9) ◽  
pp. 596-629
Author(s):  
Cesar R. Mota ◽  
Jacimaria R. Batista ◽  
Richard R. Unz ◽  
Heinrich Buch ◽  
Walter Johnson

2012 ◽  
Vol 209-211 ◽  
pp. 2039-2044
Author(s):  
Jian Lei Gao ◽  
Bing Nan Lv ◽  
Yi Xin Yan ◽  
Jian Ping Wu

A full-scale nitrogen removal system composed of an anoxic tank, an anaerobic tank, a micro-aerobic tank and an aerobic tank (A2O2) was established to treat 15,000 t/d high strength ammonia wastewater of a nitrogenous fertilizer factory. After the first stage of commissioning test, the stable operation of short-cut nitrification and denitrification has been realized at the normal temperature. The results showed that under the conditions of COD/TN ratio of only 1~2, the average removal efficiency of COD、NH3-N and TN achieved 80%, 96% and 54%, respectively without extra addition of alkalinity or carbon source, and the effluent quality was better than the requirement of the《Synthetic ammonia industrial water contamination emission standard》(draft for comment). The variation of nitrogen compounds concentration and operational parameters of pH, DO were investigated in each tank of A2O2 system. The results showed that the short-cut nitrification was stabilized in the micro-aerobic tank through the control of DO concentration (about 0.6 mg/L). Although the pH of micro-aerobic tank was only 6.6 which inhibited the growth of nitrite bacteria, the nitrite accumulation ratio reached about 48 %, closing to the criteria for judgment of short-cut nitrification of 50%. During operation, the process parameters of the A2O2 system such as reflux ratio of the mixed liquids, sludge load, sludge concentration, sludge age and SVI were all maintained in normal range, and small fluctuation of process parameters didn’t show obvious influence on short-cut nitrification.


2007 ◽  
Vol 2007 (13) ◽  
pp. 5113-5131
Author(s):  
Scott J. Christian ◽  
Shannon R. Grant ◽  
José A. Molina ◽  
Robert C. Landine ◽  
François Baril

2006 ◽  
Vol 53 (4-5) ◽  
pp. 133-141 ◽  
Author(s):  
C. Rosen ◽  
P. Ingildsen ◽  
T. Guildal ◽  
T. Munk Nielsen ◽  
M.K. Nielsen ◽  
...  

In this paper, a control strategy for introducing enhanced biological phosphorus removal (EBPR) in an alternating plant designed for enhanced biological nitrogen removal (EBNR) is presented. Alternating aerobic and anaerobic conditions to promote EBPR are provided by controlling the phases of the operational cycle, instead of a separate anaerobic volume. By utilising the control schemes already built in the STAR® control system for nitrogen removal, the control strategy is fully integrated in the system. The control system relies on on-line measurements of nitrogen (ammonia and/or nitrate) and orthophosphate. The control strategy has been implemented in full-scale operation at the Avedøre wastewater treatment plant in Denmark and the results show clear indications of success. The control strategy has operated robustly for several months with a 60% decrease in use of precipitation chemicals.


Sign in / Sign up

Export Citation Format

Share Document