Effect of Organic Matter on the Performance and Microbial Ecology of a Mainstream Anammox Process

2017 ◽  
Vol 2017 (13) ◽  
pp. 1350-1355
Author(s):  
Z Li ◽  
K Chandran
2012 ◽  
Vol 110 ◽  
pp. 701-705 ◽  
Author(s):  
Shou-Qing Ni ◽  
Jian-Yuan Ni ◽  
De-Liang Hu ◽  
Shihwu Sung

2014 ◽  
Vol 112 (2) ◽  
pp. 272-279 ◽  
Author(s):  
Hongkeun Park ◽  
Suneethi Sundar ◽  
Yiwei Ma ◽  
Kartik Chandran

2014 ◽  
Vol 159 ◽  
pp. 404-411 ◽  
Author(s):  
Huosheng Li ◽  
Shaoqi Zhou ◽  
Weihao Ma ◽  
Pengfei Huang ◽  
Guotao Huang ◽  
...  

Author(s):  
Nicholas P. Money

Many ecosystems are wholly microbial and the activities of microorganisms provide the biochemical foundation for plant and animal life. ‘Microbial ecology and evolution’ describes how plants depend upon the complex redox reactions of microbes that fertilize the soil by fixing nitrogen, converting nitrites to nitrates, enhancing the availability of phosphorus and trace elements, and recycling organic matter. Eukaryotic microorganisms are similarly plentiful and essential for the sustenance of plants and animals. Bacteria, archaea, and single-celled eukaryotes are the masters of the marine environment, harnessing the energy that supports complex ecological interactions between aquatic animals. Bacteria and archaea form 90% of the ocean biomass and surface waters are filled with eukaryotic algae.


2021 ◽  
pp. 125337
Author(s):  
Dong Li ◽  
Ziqing Wei ◽  
Shuai Li ◽  
Wenqiang Wang ◽  
Huiping Zeng ◽  
...  

2010 ◽  
Vol 61 (1) ◽  
pp. 47-52 ◽  
Author(s):  
A. Vilar ◽  
M. Eiroa ◽  
C. Kennes ◽  
M. C. Veiga

The purpose of this paper was to study the partial nitrification of the nitrogen present in a landfill leachate applying the SHARON process in order to obtain a suitable effluent to the ANAMMOX process. As a first step, the SHARON reactor was fed anaerobically pre-treated leachate at an ammonium concentration of 2,000 mg N/L (1.1 kg N/m3 d). In such conditions, the average ammonium and nitrite concentrations in the effluent were 775 mg N/L and 1,225 mg N/L, respectively. During this period the COD removal was very low since most of the biodegradable organic matter was removed in the anaerobic pre-treatment. Afterwards, the SHARON reactor was fed leachate without a previous treatment and the efficiency of the partial nitritation diminished. As well, the COD removal increased, achieving a percentage around 28%.


2008 ◽  
Vol 58 (9) ◽  
pp. 1749-1755 ◽  
Author(s):  
M. Ruscalleda ◽  
H. López ◽  
R. Ganigué ◽  
S. Puig ◽  
M. D. Balaguer ◽  
...  

The anammox process was applied to treat urban landfill leachate coming from a previous partial nitritation process. In presence of organic matter, the anammox process could coexist with heterotrophic denitrification. The goal of this study was to asses the stability of the anammox process with simultaneous heterotrophic denitrification treating urban landfill leachate. The results achieved demonstrated that the anammox process was not inactivated by heterotrophic denitrification. Moreover, part of the nitrate produced by anammox bacteria and part of the influent nitrite were removed by heterotrophic denitrifiers with associated biodegradable organic matter consumption. In this sense, the contribution on nitrogen removal of each process was calculated using a nitrogen mass balance methodology. An 85.1±5.6% of the nitrogen consumption was achieved via anammox process while the average heterotrophic denitrifiers contribution was 14.9±5.6%. Heterotrophic denitrification was limited by the available easily biodegradable organic matter.


2010 ◽  
Vol 7 (4) ◽  
pp. 320 ◽  
Author(s):  
Markus Kleber

Environmental context.On a global scale, soils store more carbon than plants or the atmosphere. The cycling of this vast reservoir of reduced carbon is closely tied to variations in environmental conditions, but robust predictions of climate–carbon cycle feedbacks are hampered by a lack of mechanistic knowledge regarding the sensitivity of organic matter decomposition to rising temperatures. This text provides a critical discussion of the practice to conceptualise parts of soil organic matter as intrinsically resistant to decomposition or ‘recalcitrant’. Abstract.The understanding that some natural organic molecules can resist microbial decomposition because of certain molecular properties forms the basis of the biogeochemical paradigm of ‘intrinsic recalcitrance’. In this concept paper I argue that recalcitrance is an indeterminate abstraction whose semantic vagueness encumbers research on terrestrial carbon cycling. Consequently, it appears to be advantageous to view the perceived ‘inherent resistance’ to decomposition of some forms of organic matter not as a material property, but as a logistical problem constrained by (i) microbial ecology; (ii) enzyme kinetics; (iii) environmental drivers; and (iv) matrix protection. A consequence of this view would be that the frequently observed temperature sensitivity of the decomposition of organic matter must result from factors other than intrinsic molecular recalcitrance.


Sign in / Sign up

Export Citation Format

Share Document