bivalve species
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 77)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
Vol 174 ◽  
pp. 113179
Author(s):  
Abir Chahouri ◽  
Mustapha Agnaou ◽  
Mohamed El Hanaoui ◽  
Bouchra Yacoubi ◽  
Abdellatif Moukrim ◽  
...  

Author(s):  
Fengling Li ◽  
Zhiyu Liu ◽  
Lin Yao ◽  
Yanhua Jiang ◽  
Meng Qu ◽  
...  

Author(s):  
Enrique Rodríguez ◽  
Amanda Radke ◽  
Tory M Hagen ◽  
Pierre U Blier

Abstract The mitochondrial oxidative stress theory of aging (MOSTA) suggests that the organelle’s decay contributes to the aging phenotype via exacerbated oxidative stress, loss of organ coordination and energetics, cellular integrity and activity of the mitochondrial electron transfer system (ETS). Recent advances in understanding the structure of the ETS show that the enzymatic complexes responsible for oxidative phosphorylation are arranged in supramolecular structures called supercomplexes that lose organization during aging. Their exact role and universality among organisms are still under debate. Here, we take advantage of marine bivalves as an aging model to compare the structure of the ETS among species ranging from 28 to 507 years in maximal lifespan. Our results show that regardless of lifespan, the bivalve ETS is arrayed as a set of supercomplexes. However, bivalve species display varying degrees ETS supramolecular organization with the highest supercomplex structures found in A. islandica, the longest-lived of the bivalve species under study. We discuss this comparative model in light of differences in the nature and stoichiometry of these complexes, and highlight the potential link between the complexity of these superstructures and longer lifespans.


Author(s):  
K. Garrett Evensen ◽  
William E. Robinson ◽  
Keegan Krick ◽  
Harry M. Murray ◽  
Helen C. Poynton
Keyword(s):  

2021 ◽  
Vol 7 (4) ◽  
pp. 72
Author(s):  
Nicholas C. Lister ◽  
Ashley M. Milton ◽  
Benjamin J. Hanrahan ◽  
Paul D. Waters

Currently there are nine known examples of transmissible cancers in nature. They have been observed in domestic dog, Tasmanian devil, and six bivalve species. These tumours can overcome host immune defences and spread to other members of the same species. Non-coding RNAs (ncRNAs) are known to play roles in tumorigenesis and immune system evasion. Despite their potential importance in transmissible cancers, there have been no studies on ncRNA function in this context to date. Here, we present possible applications of the CRISPR/Cas system to study the RNA biology of transmissible cancers. Specifically, we explore how ncRNAs may play a role in the immortality and immune evasion ability of these tumours.


2021 ◽  
Author(s):  
◽  
John Duncan Booth

<p>1) Observations made on some hydrological parameters at Bay of Islands and Wellington Harbour during 1970-71 are presented and discussed. The parameters include water temperature, salinity, dissolved oxygen content and turbidity. The water current system in Bay of Islands is also discussed and a proposed pattern presented. The hydrology of Bay of Islands and Wellington Harbour are compared. Bay of Islands is topographically lees isolated from oceanic influence than Wellington Harbour, and there is a more marked change from estuarine to oceanic hydrological conditions within the bay. Monthly mean surface seawater tempe ratures at Bay of Islands exceed those of Wellington Harbour by about 4 degrees C. Water temperature stratification is more marked in Bay of Islands than Wellington Harbour, suggesting less efficient water mixing. Salinities are lower in Wellington harbour (normally about 33.5 - 34.5 parts per thousand) than the main basin of Bay of Islands (normally about 3S.5. parts per thousand). Turbidities in estuarine areas of Bay of Islands are similar to those for most of Wellington Harbour ( 3 - 6 metres Secchi Disc visibility values), but are much Less in outer basin areas (Secchi Disc visibility values may exceed 15 metres). Dissolved oxygen content is high in both harbours, frequently exceeding 100 per cent saturation in surface water. The results suggest that although both harbours are hydrologically quite homogeneous, Wellington Harbour is more efficiently mixed than Bay of Islands. (2) Benthic and shore collections of marine bivalve molluscs were made in Bay of Islands, and benthic collections were made in Wellington Harbour, during 1970-72. The species occurring are recorded and discussed, and the distribution of some common species in Wellington Harbour is related to sediment types. A list of bivalve molluscs collected in Bay of Islands is presented, and additional species to previous Wellington Harbour species lists are recorded. Invertebrate marine communities described for New Zealand are discussed, and the bivalve fauna of both harbours is visually compared to these communities. The observations at fifty four anchor dredge benthic stations in Wellington Harbour are then treated statistically, and compared to the visual assessments. It appears that the great variability in Wellington Harbour sediments makes identity of classical communities in the harbour almost impossible. However, station groups (groups of stations with similar bivalve species present) are evident, and their distribution in Wellington Harbour correlate closely to sediment type distribution. Lists of the most abundant bivalve species occurring in both harbours, deduced from all the observations presented in this study, are given. (3) Observations were made on the occurrence of common late stage bivalve larvae in the plankton at Bay of Islands and Wellington Harbour during 1979 - 71. Three stations in Bay of Islands and four stations in Wellington Harbour were sampled approximately monthly. The bivalve larvae in shorter series of plankton samples from Raumati Beach, Dargaville Beach, Mahurangi, Ohiwa Harbour, Raglan Harbour and Kaipara Harbour during 1971 - 72 were also analysed. Twenty-nine species of bivalve larvae from these plankton samples are described. Twenty-three species of late stage bivalve larvae are provisionally identified, the identifications being based on the larval hinge structure, the distribution and abundance of the larvae in relation to adult stocks, and in some cases by correlation with the adult gonad or condition index cycle. The broad seasonal pattern of occurrence of twenty five species of late stage bivalve larvae in the plankton at Bay of Islands, Wellington Harbour and Raumati Beach is presented. (4) Ecological studies made on bivalve larvae at Bay of Islands and Wellington Harbour during 1970 - 71, are presented and compared to other published studies from overseas. Included are observations on the vertical meso-distribution of bivalve larvae over tidal cycles in estuarine and non-estuarine localities of l2m to l5m depth, the daytime vertical meso-distribution of bivalve larvae in non-estuarine water 20m- 30m in depth, the effect of light on the vertical meso-distribution of bivalve larvae in water 15m- 30min depth, and the horizontal mega-distribution of bivalve larvae in Wellington Harbour and Bay of Islands. The observations suggest that in estuarine areas, the effect of alternating tides on the vertical distribution of bivalve larvae far outweighs the effects of any other factors. During the flood tide, bivalve larvae rise from the bottom into the water column and are carried up the estuary by the tide. During the ebb tide the larvae settle and remain on the bottom. In non-estuarine areas, no such vertical migration was observed. Gravity, light and water currents, in particular, affect the vertical distribution of bivalve larvae in these areas. The horizontal mega-distribution of bivalve larvae within Wellington Harbour is fairly uniform. In Bay of Islands, bivalve larvae occur in greatest densities near the shores, while much of the central basin is almost devoid of larvae. This distribution is due to the proximity of the adult stocks to the regions of most larvae, and to the prevailing water current pattern within the bay.</p>


2021 ◽  
Author(s):  
◽  
John Duncan Booth

<p>1) Observations made on some hydrological parameters at Bay of Islands and Wellington Harbour during 1970-71 are presented and discussed. The parameters include water temperature, salinity, dissolved oxygen content and turbidity. The water current system in Bay of Islands is also discussed and a proposed pattern presented. The hydrology of Bay of Islands and Wellington Harbour are compared. Bay of Islands is topographically lees isolated from oceanic influence than Wellington Harbour, and there is a more marked change from estuarine to oceanic hydrological conditions within the bay. Monthly mean surface seawater tempe ratures at Bay of Islands exceed those of Wellington Harbour by about 4 degrees C. Water temperature stratification is more marked in Bay of Islands than Wellington Harbour, suggesting less efficient water mixing. Salinities are lower in Wellington harbour (normally about 33.5 - 34.5 parts per thousand) than the main basin of Bay of Islands (normally about 3S.5. parts per thousand). Turbidities in estuarine areas of Bay of Islands are similar to those for most of Wellington Harbour ( 3 - 6 metres Secchi Disc visibility values), but are much Less in outer basin areas (Secchi Disc visibility values may exceed 15 metres). Dissolved oxygen content is high in both harbours, frequently exceeding 100 per cent saturation in surface water. The results suggest that although both harbours are hydrologically quite homogeneous, Wellington Harbour is more efficiently mixed than Bay of Islands. (2) Benthic and shore collections of marine bivalve molluscs were made in Bay of Islands, and benthic collections were made in Wellington Harbour, during 1970-72. The species occurring are recorded and discussed, and the distribution of some common species in Wellington Harbour is related to sediment types. A list of bivalve molluscs collected in Bay of Islands is presented, and additional species to previous Wellington Harbour species lists are recorded. Invertebrate marine communities described for New Zealand are discussed, and the bivalve fauna of both harbours is visually compared to these communities. The observations at fifty four anchor dredge benthic stations in Wellington Harbour are then treated statistically, and compared to the visual assessments. It appears that the great variability in Wellington Harbour sediments makes identity of classical communities in the harbour almost impossible. However, station groups (groups of stations with similar bivalve species present) are evident, and their distribution in Wellington Harbour correlate closely to sediment type distribution. Lists of the most abundant bivalve species occurring in both harbours, deduced from all the observations presented in this study, are given. (3) Observations were made on the occurrence of common late stage bivalve larvae in the plankton at Bay of Islands and Wellington Harbour during 1979 - 71. Three stations in Bay of Islands and four stations in Wellington Harbour were sampled approximately monthly. The bivalve larvae in shorter series of plankton samples from Raumati Beach, Dargaville Beach, Mahurangi, Ohiwa Harbour, Raglan Harbour and Kaipara Harbour during 1971 - 72 were also analysed. Twenty-nine species of bivalve larvae from these plankton samples are described. Twenty-three species of late stage bivalve larvae are provisionally identified, the identifications being based on the larval hinge structure, the distribution and abundance of the larvae in relation to adult stocks, and in some cases by correlation with the adult gonad or condition index cycle. The broad seasonal pattern of occurrence of twenty five species of late stage bivalve larvae in the plankton at Bay of Islands, Wellington Harbour and Raumati Beach is presented. (4) Ecological studies made on bivalve larvae at Bay of Islands and Wellington Harbour during 1970 - 71, are presented and compared to other published studies from overseas. Included are observations on the vertical meso-distribution of bivalve larvae over tidal cycles in estuarine and non-estuarine localities of l2m to l5m depth, the daytime vertical meso-distribution of bivalve larvae in non-estuarine water 20m- 30m in depth, the effect of light on the vertical meso-distribution of bivalve larvae in water 15m- 30min depth, and the horizontal mega-distribution of bivalve larvae in Wellington Harbour and Bay of Islands. The observations suggest that in estuarine areas, the effect of alternating tides on the vertical distribution of bivalve larvae far outweighs the effects of any other factors. During the flood tide, bivalve larvae rise from the bottom into the water column and are carried up the estuary by the tide. During the ebb tide the larvae settle and remain on the bottom. In non-estuarine areas, no such vertical migration was observed. Gravity, light and water currents, in particular, affect the vertical distribution of bivalve larvae in these areas. The horizontal mega-distribution of bivalve larvae within Wellington Harbour is fairly uniform. In Bay of Islands, bivalve larvae occur in greatest densities near the shores, while much of the central basin is almost devoid of larvae. This distribution is due to the proximity of the adult stocks to the regions of most larvae, and to the prevailing water current pattern within the bay.</p>


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2690
Author(s):  
Jelena Mutić ◽  
Vesna Jovanović ◽  
Liesbeth Jacxsens ◽  
Jannes Tondeleir ◽  
Petar Ristivojević ◽  
...  

Bivalves are a good source of nutrients but also a potential source of environmental contaminants, which could pose a risk for consumers. The aims of this study were: the determination of 16 elements by ICP-MS in 48 samples of five bivalve species purchased from market in Korea; the identification of elements useful for species classification using multivariate analyses; and the benefit-risk evaluation associated to the consumption of these bivalves. The highest difference among content of elements between species was found for Cd, Mn, Ni, Zn, and Fe. Partial last squares discriminant analysis revealed elements with a VIP score >1 which were considered as the most relevant for explaining certain species. As, Cd, Co, and Ni were found as taxonomical markers of V. philippinarum; Mn, Zn, Mg, and Na of A. irradians; and Cd, Ni, and Fe of M. yessoensis. These species could serve as good dietary sources of essential elements. Cd exposure by consumption of Manila clams is not representing a health risk for the Korean population; however, through consumption of Yesso scallops, 5.3% of the Korean population has a potential health risk. Removal of the digestive gland before eating will drastically reduce the amount of Cd ingested.


Sign in / Sign up

Export Citation Format

Share Document