scholarly journals On the Ability of Ca-uptake in the Fragmented Sarcoplasmic Reticulum Extracted from the Guinea Pig Masticatory Muscles

1973 ◽  
Vol 49 (5) ◽  
pp. 367-371
Author(s):  
Hiroaki NISHIJIMA ◽  
Yushi ITO ◽  
Hirosi KURIYAMA
1974 ◽  
Vol 47 (4) ◽  
pp. 1171-1184 ◽  
Author(s):  
Masuda Koji ◽  
Takahashi Shoichiro ◽  
Kuriyama Hirosi

1993 ◽  
Vol 265 (6) ◽  
pp. H2117-H2136 ◽  
Author(s):  
C. Nordin

This paper presents the equations and responses of a mathematical model that simulates the transmembrane current and intracellular concentrations of Ca2+ ([Ca2+]), Na+ ([Na+]), and K+ ([K+]) of an isolated guinea pig myocyte. The structure of the model is closely related to the formulation of DiFrancesco and Noble (9). Quantitative values are based on a large number of experimental constraints, taken from the literature on isolated myocytes as well as our own experimental studies, that describe the properties of individual channels and integrated responses of whole cells under a variety of conditions. The model was constructed as a homeostatic system. The equilibrium of the model corresponds to the resting potential and intracellular ionic concentrations of unstimulated myocytes. The model generates deviations from equilibrium corresponding to the behavior of cells after stimulation of action potentials at different rates, blockade of Na-K-adenosinetriphosphatase (ATPase), reduction in extracellular [K+], and injection of constant depolarizing current. Simulations from the model suggest that changes in myoplasmic [Ca2+] at different stimulation rates, the generation of restitution and postextrasystolic potentiation, and the development of intracellular [Ca2+] oscillations arise simply from different interactions between uptake of Ca2+ into the sarcoplasmic reticulum via the Ca(2+)-ATPase, Ca(2+)-induced Ca2+ release of Ca2+ into the myoplasm, flux between regions of uptake and release, and leakage between sarcoplasmic reticulum and myoplasm. The model also demonstrates that a wide variety of basic electrophysiological responses of the isolated guinea pig myocyte can be simulated with quantitative precision by a single set of equations based on experimentally measured transmembrane current and intracellular [Ca2+] and [Na+].


2000 ◽  
Vol 278 (5) ◽  
pp. H1618-H1626 ◽  
Author(s):  
Gregory R. Ferrier ◽  
Isabel M. Redondo ◽  
Cindy A. Mason ◽  
Cindy Mapplebeck ◽  
Susan E. Howlett

Control of contraction and relaxation by membrane potential was investigated in voltage-clamped guinea pig ventricular myocytes at 37°C. Depolarization initiated phasic contractions, followed by sustained contractions that relaxed with repolarization. Corresponding Ca2+ transients were observed with fura 2. Sustained responses were ryanodine sensitive and exhibited sigmoidal activation and deactivation relations, with half-maximal voltages near −46 mV, which is characteristic of the voltage-sensitive release mechanism (VSRM) for sarcoplasmic reticulum Ca2+. Inactivation was not detected. Sustained responses were insensitive to inactivation or block of L-type Ca2+ current ( I Ca-L). The voltage dependence of sustained responses was not affected by changes in intracellular or extracellular Na+ concentration. Furthermore, sustained responses were not inhibited by 2 mM Ni2+. Thus it is improbable that I Ca-L or Na+/Ca2+ exchange generated these sustained responses. However, rapid application of 200 μM tetracaine, which blocks the VSRM, strongly inhibited sustained contractions. Our study indicates that the VSRM includes both a phasic inactivating and a sustained noninactivating component. The sustained component contributes both to initiation and relaxation of contraction.


Sign in / Sign up

Export Citation Format

Share Document