scholarly journals Simulation of glacial lake outburst flood hazard in Hunza valley of upper Indus Basin

2021 ◽  
Vol 8 (1) ◽  
pp. 41-49
Author(s):  
Gilany et al. ◽  
2020 ◽  
Author(s):  
Syed Naseem Abbas Gilany ◽  
Javed Iqbal ◽  
Ejaz Hussain

Abstract. The UIB (Upper Indus Basin) is prone to GLOFs (Glacial Lake Outburst Floods). Physical monitoring of such a large area on regular basis is a challenging task especially when the temporal and spatial extent of the hazard is highly variable. The purpose of this study was to map the potentially dangerous glacial lakes and simulate the associated hazard in the downward settlements using HEC-RAS in the GIS environment using Landsat 7 remote sensing data. The study was conducted in Hunza and Shyok sub-basins of UIB where there are several human settlements which are endangered due to the GLOF hazard. Sudden breaches in the unstable moraine dams adjoining receding glaciers may occur because of rapid and huge accumulation of turbulent water in the glacial lakes. The ASTER DEM (Digital Elevation Model) is utilized to detect flow accumulation of glacial hazard involving slope, elevation, and orientation of the mountain glaciers. The study results revealed that settlements of Hunza and Shyok basins are threatened by the GLOFs hazard. Keeping in view the seasonal growth of the potentially dangerous glacial lakes of Hunza basin, a low discharge of 3500 m3/s from potentially dangerous glacial lake can affect 40 %, whereas, a moderate discharge of 5000 m3/s can affect 60% and a high discharge of 7000 m3/s can affect 80 % of the Shimshal village habitat. In Shyok basin, a low discharge of 100 m3/s from both lakes can affect 20 %, whereas, a moderate discharge of 300 m3/s can affect 30 % and a high discharge of 500 m3/s can affect 40 % of the Barah village habitat. The results of the study can provide a platform for the establishment of an early warning and monitoring system to minimize the impact of future GLOFs. Accurate and comprehensive knowledge of potentially dangerous GLOFs is of utmost importance for risk management. A digital repository of GLOFs can enhance the ability to inform policy makers on the vulnerability, risk mitigation and action/adaptation measures.


2018 ◽  
Vol 6 ◽  
Author(s):  
Holger Frey ◽  
Christian Huggel ◽  
Rachel E. Chisolm ◽  
Patrick Baer ◽  
Brian McArdell ◽  
...  

2021 ◽  
Vol 80 (12) ◽  
Author(s):  
Arshad Ashraf ◽  
Muhammad Bilal Iqbal ◽  
Naveed Mustafa ◽  
Rozina Naz ◽  
Bashir Ahmad

2021 ◽  
Vol 212 ◽  
pp. 103432
Author(s):  
Nazir Ahmed Bazai ◽  
Peng Cui ◽  
Paul A. Carling ◽  
Hao Wang ◽  
Javed Hassan ◽  
...  

2021 ◽  
Author(s):  
Ian Giesbrecht ◽  
Suzanne Tank ◽  
Justin Del Bel Belluz ◽  
Jennifer Jackson

<p>Rainforest rivers export large quantities of terrestrial materials from watersheds to the coastal ocean, with important implications for local ecosystems and global biogeochemical cycles. However, the impact of episodic disturbance on this process is a critical knowledge gap in our understanding of land-sea connections. Fjords represent a global hotspot for terrestrial carbon burial in marine sediments, yet the relative importance of typical riverine fluxes vs. mass wasting fluxes is uncertain and dynamic. Similarly, mass wasting events can generate both an instantaneous pulse and a sustained shift in the material export regime. Riverine sediment regimes also have important implications for freshwater ecosystems and fisheries resources. A recent mass wasting event in Bute Inlet – Homalco First Nation traditional territory and British Columbia, Canada – presents an important opportunity to quantify the sustained impact of such an infrequent large disturbance on the source-to-sink linkages between glacierized mountains, rivers, and fjords.</p><p>On November 28, 2020, a landslide in the headwaters of the Elliot Creek watershed (118 km<sup>2</sup>) triggered a glacial lake outburst flood (GLOF) that eroded 3 km<sup>2</sup> of forested land and exported large volumes of water and terrestrial materials to the lower reaches of the Southgate River watershed (1986 km<sup>2</sup>) and ultimately to the head of Bute Inlet. Here we assess river and ocean surface turbidity over four winter months following the event, in comparison to pre-event measurements taken across all seasons in recent years. River turbidity was measured on the Southgate River above and below the confluence of Elliot Creek, beginning in December 2020, and at the mouth of the Southgate and nearby Homathko Rivers prior to November 2020. Bute Inlet turbidity was measured (every month to two months) starting in May 2017.</p><p>Prior to the GLOF event, Southgate River turbidity ranged from a low of 3.3 ± 0.4 FNU in the winter to a high of 71.4 FNU in the summer meltwater period. Since the event, Southgate River turbidity has been consistently elevated ≥6 times background levels recorded above Elliot Creek. At the extreme, on January 13, 2021, seven weeks after the GLOF, Southgate River mean turbidity (105.2 ± 3.3 FNU) was 32 times the background (3.3 ± 0.4 FNU), equating to a sustained increase in wintertime turbidity that sometimes exceeds the historical summertime peak. Given the typical coupling of turbidity with discharge, we expect further increases in turbidity with the coming freshet of 2021; the first meltwater season following the GLOF. These results suggest the potential for a sustained shift in the seasonal turbidity regime of the Southgate River and the estuarine waters of Bute Inlet. The elevated turbidity signals broader changes to: sediment export and carbon burial, the depth and seasonality of light penetration, river water quality, and spawning habitat quality for anadromous fish. Ongoing monitoring will be used to characterize the duration, dynamics, and potential recovery of elevated turbidity regimes across the land-to-ocean aquatic continuum in Bute Inlet.</p>


2013 ◽  
Vol 12 ◽  
pp. 10-16
Author(s):  
P Yagol ◽  
A Manandhar ◽  
P Ghimire ◽  
RB Kayastha ◽  
JR Joshi

In past Nepal has encountered a number of glacial lake outburst flood (GLOF) events causing loss of billions of rupees. Still there are a number of glacial lakes forming and there are chances of new glacial lake formation. Hence there is intense need to monitor glaciers and glacial lakes. The development on remote sensing technology has eased the researches on glacier and glacial lakes. Identification of locations of potential glacial lakes through the use of remote sensing technology has been proven and hence is opted for identification of locations of potential glacial lake in Khumbu Valley of Sagarmatha Zone, Nepal. The probable sites for glacial lake formation are at Ngojumpa, Lobuche, Khumbu, Bhotekoshi, Inkhu, Kyasar, Lumsumna, etc. As per study, the biggest glacial lake could form at Ngozumpa glacier. Even in other glaciers potential supra-glacial lakes could merge together to form lakes that occupy significant area. Nepalese Journal on Geoinformatics -12, 2070 (2013AD): 10-16


Sign in / Sign up

Export Citation Format

Share Document