mass wasting
Recently Published Documents


TOTAL DOCUMENTS

470
(FIVE YEARS 107)

H-INDEX

39
(FIVE YEARS 5)

2022 ◽  
Vol 578 ◽  
pp. 117333
Author(s):  
R. Omira ◽  
M.A. Baptista ◽  
R. Quartau ◽  
R.S. Ramalho ◽  
J. Kim ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 4901
Author(s):  
Katie E. Hughes ◽  
Amanda Wild ◽  
Eva Kwoll ◽  
Marten Geertsema ◽  
Alexandra Perry ◽  
...  

Quantifying the contribution of sediment delivered to rivers by landslides is needed to assess a river’s sediment load in regions prone to mass wasting. Monitoring such events, however, remains difficult. This study utilised six years of remotely sensed imagery (PlanetScope and RapidEye, Imagery courtesy of Planet Labs, Inc., San Francisco, CA, USA), topographic surveys, and field observation to examine a hydro-geologically controlled, retrogressive landslide near a tributary to the Peace River, British Columbia. The slide has been active since 2014, delivering large amounts of sediment to the Peace River, visible in a persistent plume. Here, we quantify the landslide’s sediment contribution to the Peace River, assess the hydro-meteorological drivers of plume variability, and test whether plume activity can be directly linked to landslide activity for monitoring purposes. Our results show that the landslide on average delivered 165,000 tonnes of sediment per year, a seven-fold increase of the tributary’s regular load and near half of the Peace River’s load at this location. Due to continuous erosion of landslide material, sediment supply is steady and fuelled by repeated failures. Using thresholding, the identification of ‘high’ plume activity was possible, which positively correlated with the water level in a nearby reservoir, a proxy for the state of groundwater in this region. We reason that ‘high’ plume activity is linked to increased groundwater pressure because landslide activity is groundwater-controlled and failures fuel sediment delivery to the Peace River. Using readily available imagery, it is thus possible to monitor the activity of this recurrent landslide when field data are difficult to obtain.


Author(s):  
Giovanni Leonelli ◽  
Irene Maria Bollati ◽  
Paolo Cherubini ◽  
Matthias Saurer ◽  
Francesca Vergari ◽  
...  

Landslides ◽  
2021 ◽  
Author(s):  
Bernd Zolitschka ◽  
Irene Sophie Polgar ◽  
Hermann Behling

AbstractThe timing of the Monte Peron Landslide is revised to 2890 cal. BP based on a radiocarbon-dated sediment stratigraphy of Lago di Vedana. This age fosters the importance of hydroclimatic triggers in the light of accelerating global warming with a predicted increase of precipitation enhancing the regional predisposition to large landslides. Moreover, a layer enriched in allochthonous organic and minerogenic detritus dating to the same wet period is interpreted as response to a younger and yet unidentified mass wasting event in the catchment of Lago di Vedana. Rock debris of the Monte Peron Landslide impounded the Cordevole River valley and created a landslide-dammed lake. Around AD 1150, eutrophication of this lacustrine ecosystem started with intensified human occupation – a process that ended 150 years later, when the river was diverted back into its original bed. Most likely, this occurred due to artificial opening of the river dam. In consequence, Lago di Vedana was isolated from an open and minerogenic to an endorheic and carbonaceous lacustrine system. After a monastery was established nearby in AD 1457, a second eutrophication process was initiated due to intensified land use linked with deforestation. Only in the eighteenth and nineteenth centuries, deposition of organic matter decreased coinciding with climatic (Little Ice Age) and cultural changes. Conversational measures are the likely reasons for a trend towards less eutrophic conditions since AD 1950.


2021 ◽  
Author(s):  
Michael Barthelmes

Geologic Resources Inventory reports provide information and resources to help park managers make decisions for visitor safety, planning and protection of infrastructure, and preservation of natural and cultural resources. Information in GRI reports may also be useful for interpretation. This report synthesizes discussions from a scoping meeting held in 2012 and a follow-up conference call in 2020. Chapters of this report discuss the geologic setting and significance, geologic features and processes, and geologic resource management issues within Kennesaw Mountain National Battlefield Park. Information about the previously completed GRI map data is also provided. A GRI map poster (separate product) illustrate the GRI map data. Geologic features, processes, and resource management issues identified include erosion and mass wasting, fluvial features and processes, monadnocks, earthworks, stone quarry, building stone, ultramafic rocks, seismic activity, caves and karst, and eolian features and processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua N. Jones ◽  
Sarah J. Boulton ◽  
Martin Stokes ◽  
Georgina L. Bennett ◽  
Michael R. Z. Whitworth

AbstractIn mountainous environments, quantifying the drivers of mass-wasting is fundamental for understanding landscape evolution and improving hazard management. Here, we quantify the magnitudes of mass-wasting caused by the Asia Summer Monsoon, extreme rainfall, and earthquakes in the Nepal Himalaya. Using a newly compiled 30-year mass-wasting inventory, we establish empirical relationships between monsoon-triggered mass-wasting and monsoon precipitation, before quantifying how other mass-wasting drivers perturb this relationship. We find that perturbations up to 5 times greater than that expected from the monsoon alone are caused by rainfall events with 5-to-30-year return periods and short-term (< 2 year) earthquake-induced landscape preconditioning. In 2015, the landscape preconditioning is strongly controlled by the topographic signature of the Gorkha earthquake, whereby high Peak Ground Accelerations coincident with high excess topography (rock volume above a landscape threshold angle) amplifies landscape damage. Furthermore, earlier earthquakes in 1934, 1988 and 2011 are not found to influence 2015 mass-wasting.


2021 ◽  
Author(s):  
Nina Danielle Szabo Webb ◽  
Netra R Regmi ◽  
Gerilyn Soreghan ◽  
Andrew S. Elwood Madden ◽  
Jordan Sylvester ◽  
...  

2021 ◽  
pp. jgs2021-052
Author(s):  
Daniel Paul Le Heron ◽  
Christoph Kettler ◽  
Bethan J. Davies ◽  
Lars Scharfenberg ◽  
Lukas Eder ◽  
...  

The Gepatsch Glacier in Tirol (Austria) is a rapidly retreating valley glacier whose host valley and forefield reveal subglacial, proglacial, and reworked sediment-landform assemblages. Structures include roches moutonées develop on gneiss, compound bedrock-sediment bedforms (crag and tail structures), flutes, and small diamicton ridges. The glacial sediments and landforms are undergoing incision and terrace development by meltwater streams. Glacial geomorphological and surface geological maps maps, in concert with elevation models of difference between July 2019 and July 2020 highlight considerable changes to the forefield over a 12-month time period. Till exposed within the last 20 years has undergone substantial mass wasting and re-deposition as subaerial mass flows, or reworked into stream deposits. The lee sides of many roches moutonées completely lack subglacial sediment, and instead contain a sand and gravel deposit interpreted to result from glaciofluvial deposition. Thus, insights into the rates of erosion and deposition in a complex, proglacial setting, allow some of these processes to be quantified for the first time. Repeated monitoring of glacier forefields is expected to yield a better understanding of the preservation potential of proglacial sedimentary facies, and hence their preservation potential in Earth's sedimentary record.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5664299


2021 ◽  
Author(s):  
Brian G. Sockness ◽  
Karen B. Gran

Abstract. How do channel networks develop in low-gradient, poorly-drained landscapes? Rivers form elaborate drainage networks with morphologies that express the unique environments in which they developed, yet we lack an understanding of what drives channel development in low-gradient landscapes like those left behind in the wake of continental glaciation. To better understand what controls the erosional processes allowing channel growth and integration of non-contributing areas (NCA) over time, we conducted a series of experiments in a small-scale drainage basin. By varying substrate and precipitation, we could vary the partitioning of flow between the surface and subsurface, impacting erosional processes. Channels developed by overland flow and seepage erosion to varying extents depending on substrate composition, rainfall rate, and drainage basin relief. Seepage-driven erosion was favored in substrates with higher infiltration rates, while overland flow was more dominant in experiments with high precipitation rates. Overland flow channels formed at the onset of experiments and expanded over a majority of the basin area, forming broad dendritic networks. Large surface water contributing areas supported numerous first-order channels, allowing for more rapid integration of NCA than through seepage erosion. When overland flow was the dominant process, channels integrated NCA at a similar, consistent rate under all experimental conditions. Seepage erosion began later in experiments after channels had incised enough for exfiltrating subsurface flow to initiate mass wasting of headwalls. Periodic mass wasting of channel heads caused them to assume an amphitheater-shaped morphology. Seepage allowed for channel heads to expand with smaller surface water contributing areas than overland flow channels, allowing for network expansion to continue even with low CA. Seepage-driven channel heads integrated NCA more slowly than channel heads dominated by overland flow, but average erosion rates in channels extending through seepage erosion were higher. The experimental results provide insight into drainage networks that formed in glacial sediment throughout areas affected by continental glaciation, and highlight the importance of subsurface hydrologic connections in integrating and expanding drainage networks over time in these landscapes.


Sign in / Sign up

Export Citation Format

Share Document