upper indus basin
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 82)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 2 (4) ◽  
pp. 1187-1207
Author(s):  
Jean-Philippe Baudouin ◽  
Michael Herzog ◽  
Cameron A. Petrie

Abstract. Precipitation in the Upper Indus Basin is triggered by orographic interaction and the forced uplift of a cross-barrier moisture flow. Winter precipitation events are particularly active in this region and are driven by an approaching upper-troposphere western disturbance. Here statistical tools are used to decompose the winter precipitation time series into a wind and a moisture contribution. The relationship between each contribution and the western disturbances are investigated. We find that the wind contribution is related not only to the intensity of the upper-troposphere disturbances but also to their thermal structure through baroclinic processes. Particularly, a short-lived baroclinic interaction between the western disturbance and the lower-altitude cross-barrier flow occurs due to the shape of the relief. This interaction explains both the high activity of western disturbances in the area and their quick decay as they move further east. We also revealed the existence of a moisture pathway from the Red Sea to the Persian Gulf and the north of the Arabian Sea. A western disturbance strengthens this flow and steers it towards the Upper Indus Plain, particularly if it originates from a more southern latitude. In cases where the disturbance originates from the north-west, its impact on the moisture flow is limited, since the advected continental dry air drastically limits the precipitation output. The study offers a conceptual framework to study the synoptic activity of western disturbances as well as key parameters that explain their precipitation output. This can be used to investigate meso-scale processes or intra-seasonal to inter-annual synoptic activity.


Author(s):  
Jamal H. Ougahi ◽  
Mark E. J. Cutler ◽  
Simon J. Cook

Abstract Climate change has implications for water resources by increasing temperature, shifting precipitation patterns and altering the timing of snowfall and glacier melt, leading to shifts in the seasonality of river flows. Here, the Soil & Water Assessment Tool was run using downscaled precipitation and temperature projections from five global climate models (GCMs) and their multi-model mean to estimate the potential impact of climate change on water balance components in sub-basins of the Upper Indus Basin (UIB) under two emission (RCP4.5 and RCP8.5) and future (2020–2050 and 2070–2100) scenarios. Warming of above 6 °C relative to baseline (1974–2004) is projected for the UIB by the end of the century (2070–2100), but the spread of annual precipitation projections among GCMs is large (+16 to −28%), and even larger for seasonal precipitation (+91 to −48%). Compared to the baseline, an increase in summer precipitation (RCP8.5: +36.7%) and a decrease in winter precipitation were projected (RCP8.5: −16.9%), with an increase in average annual water yield from the nival–glacial regime and river flow peaking 1 month earlier. We conclude that predicted warming during winter and spring could substantially affect the seasonal river flows, with important implications for water supplies.


Author(s):  
Kashif Haleem ◽  
Afed Ullah Khan ◽  
Sohail Ahmad ◽  
Mansoor Khan ◽  
Fayaz Ahmad Khan ◽  
...  

Abstract Investigating the effects of climate and land-use changes on surface runoff is critical for water resources management. The majority of studies focused on projected climate change effects on surface runoff, while neglecting future land-use change. Therefore, the main aim of this article is to discriminate the impacts of projected climate and land-use changes on surface runoff using the Soil and Water Assessment Tool (SWAT) through the lens of the Upper Indus Basin, Pakistan. Future scenarios of the land-use and climate changes are predicted using cellular automata artificial neural network and four bias-corrected general circulation models, respectively. The historical record (2000–2013) was divided into the calibration period (2000–2008) and the validation period (2009–2013). The simulated results demonstrated that the SWAT model performed well. The results obtained from 2000 to 2013 show that climate change (61.61%) has a higher influence on river runoff than land-use change (38.39%). Both climate and land-use changes are predicted to increase future runoff depth in this basin. The influence of climate change (12.76–25.92%) is greater than land-use change (0.37–1.1%). Global weather data has good applicability for simulating hydrological responses in the region where conventional gauges are unavailable. The study discusses that both climate and land-use changes impact runoff depth and concluded some suggestions for water resources managers to bring water environment sustainability.


2021 ◽  
Vol 785 ◽  
pp. 147318
Author(s):  
Fazle Yar Khan ◽  
Arshad Ashraf ◽  
Gulraiz Akhter ◽  
Muzaffar Ali Baig ◽  
Shams Ali Baig

Sign in / Sign up

Export Citation Format

Share Document