scholarly journals Структурный переход в пленках триацетата целлюлозы

2022 ◽  
Vol 64 (2) ◽  
pp. 289
Author(s):  
Д.В. Новиков

Electron microscopy data are used to comparative analysis of the topological structure of the surface of two samples of cellulose triacetate (СTA) films. The samples were obtained from CTA solutions without use (sample №1) and with the use of a small sodium fluoride additive that lowers the viscosity of the solution (sample №2). It is shown that in sample №1, the nodes of the physical network of macromolecules are periodically alternating regions of local orientation order - microdomains of average size d~18 nm. In sample №2, due to repackaging of microdomains on the scale R >d, a uniformly disordered fractal cluster of the mesophase CTA is formed. The fractalization of the surface and the growth of structural anisotropy are consistent with the decrease in the viscosity of the solution and explain the change in the deformation properties of sample №2 compared to №1.

2021 ◽  
Vol 27 (S1) ◽  
pp. 94-95
Author(s):  
Ryan Lane ◽  
Luuk Balkenende ◽  
Simon van Staalduine ◽  
Anouk Wolters ◽  
Ben Giepmans ◽  
...  

2015 ◽  
Vol 245 ◽  
pp. 200-203 ◽  
Author(s):  
Maxim Alexandrovich Pugachevskii ◽  
Viktor Igorevich Panfilov

The conditions of formation of the ZrO2 and HfO2 high-temperature (tetragonal and cubic) phases in the ablated nanoparticles were investigated. X-ray diffraction and transmission electron microscopy data demonstrate that laser intensities above 109 W/m2 ensure the formation of the ZrO2 high-temperature phases, while intensities above 5·109 W/m2 do the formation of the HfO2 high-temperature phases. Quantitative content of the high-temperature phases in layers of the ablated nanoparticles increases with raising the intensity. The obtained nanoparticles exhibit good thermal stability.


2021 ◽  
Author(s):  
Luke Nightingale ◽  
Joost de Folter ◽  
Helen Spiers ◽  
Amy Strange ◽  
Lucy M Collinson ◽  
...  

We present a new method for rapid, automated, large-scale 3D mitochondria instance segmentation, developed in response to the ISBI 2021 MitoEM Challenge. In brief, we trained separate machine learning algorithms to predict (1) mitochondria areas and (2) mitochondria boundaries in image volumes acquired from both rat and human cortex with multi-beam scanning electron microscopy. The predictions from these algorithms were combined in a multi-step post-processing procedure, that resulted in high semantic and instance segmentation performance. All code is provided via a public repository.


Author(s):  
Н.А. Шурыгина ◽  
А.М. Глезер ◽  
Д.Л. Дьяконов ◽  
А.А. Томчук ◽  
А.Г. Кадомцев ◽  
...  

AbstractTransmission electron microscopy data showed evidence of the formation of structural regions corresponding to deformation (dislocated) fragments and dynamically recrystallized grains in α-phase titanium upon torsion at high hydrostatic pressure at room and cryogenic temperatures. It is shown that the previously proposed “two-phase mixture” model is applicable to description of these defect structures.


Sign in / Sign up

Export Citation Format

Share Document