scholarly journals Photochemically Induced Circular Dichroism of Semiconductor Nanocrystals-=SUP=-*-=/SUP=-

2020 ◽  
Vol 128 (8) ◽  
pp. 1192
Author(s):  
F.M. Safin ◽  
V.G. Maslov ◽  
A.Y. Dubavik ◽  
E.P. Kolesova ◽  
A.V. Baranov ◽  
...  

Here, we report an investigation of optical activity which was photochemically induced by illumination of QRs and DiRs with circularly polarized light; the photo-induced circular dichroism was quantitatively estimated, and it was shown that the photo-induced chemical reaction proceeds selectively, depending on the handedness of circularly polarized light. Keywords: chirality, optical activity, circular dichroism, photoinduced circular dichroism, semiconductor nanocrystals, quantum rods, quantum dot-in-rods.

1994 ◽  
Vol 48 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Lei Geng ◽  
Linda B. McGown

A major difficulty in fluorescence-detected circular dichroism (FDCD) and lifetime-resolved fluorescence-detected circular dichroism (LRFDCD) is the generation of equal excitation intensities of left circularly polarized light (LCPL) and right circularly polarized light (RCPL). In the presence of unequal intensities, the observed FDCD signal of an optically active sample, or the resolved FDCD signals of a multicomponent system in the case of LRFDCD, will be contaminated by a factor that is the ratio of the two unequal intensities. For optically inactive samples, a sample-independent, artifactual, nonzero signal of constant magnitude is observed. A general scheme is presented for the correction of these inaccuracies caused by unequal intensities of LCPL and RCPL. Large differences between LCPL and RCPL excitation intensities were artificially introduced in steady-state FDCD measurements, and the artifact was accurately corrected by the scheme. Corrected results for the different experimental approaches that have been described for LRFDCD showed similarly good accuracy. In a related consideration, inclusion of the total absorbance and absorption circular dichroism of the sample in the calculation of the FDCD signal is shown to be essential for samples with high absorbances.


2013 ◽  
Vol 59 ◽  
pp. 359-382 ◽  
Author(s):  
Andrew J. Thomson ◽  
Laurence D. Barron

Philip J. Stephens was a theoretical chemist who brought to fruition two new forms of optical spectroscopy, using circularly polarized light, for the determination of electronic structure and molecular stereochemistry. The first was magnetic circular dichroism (MCD), the wavelength dependence of the differential absorption of left and right circularly polarized light induced by a magnetic field applied parallel to the light beam. Stephens established a methodology for extracting from MCD spectra the angular momentum characteristics of ground and excited electronic states and demonstrated applications to the assignment of the optical spectra of coordination complexes of transition metals and to metalloproteins. In the second half of his career Stephens led the field of vibrational circular dichroism (VCD), the measurement of the natural circular dichroism (CD) arising from the vibrational transitions of chiral molecules. He developed instrumental techniques to measure this weak dichroism over a wide frequency range with high sensitivity. Subsequently he developed a quantum-mechanical method that yielded reliable calculations of VCD spectra by using density functional theory. Thus absolute configurations of all the chiral centres in an organic molecule are readily established. Given the increasing importance of enantiomerically pure chiral drugs, VCD has found widespread application in the pharmaceutical industry. Philip had not only a deep understanding of chemical theory but also a thorough grasp of experiments. His lectures on theoretical topics were models of clarity. He was also an accomplished pianist in demand, when a student at Oxford University, as an accompanist and for chamber concerts.


Nanophotonics ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 573-578 ◽  
Author(s):  
Nikita V. Tepliakov ◽  
Anvar S. Baimuratov ◽  
Yurii K. Gun’ko ◽  
Alexander V. Baranov ◽  
Anatoly V. Fedorov ◽  
...  

AbstractControlling the strength of enantioselective interaction of chiral inorganic nanoparticles with circularly polarized light is an intrinsically interesting subject of contemporary nanophotonics. This interaction is relatively weak, because the chirality scale of nanoparticles is much smaller than the optical wavelength. Here we theoretically demonstrate that ion doping provides a powerful tool of engineering and enhances optical activity of semiconductor nanocrystals. We show that by carefully positioning ionic impurities inside the nanocrystals, one can maximize the rotatory strengths of intraband optical transitions, and make them 100 times larger than the typical rotatory strengths of small chiral molecules.


Sign in / Sign up

Export Citation Format

Share Document