scholarly journals Low rank approximation of positive semi-definite symmetric matrices using Gaussian elimination and volume sampling

2021 ◽  
Vol 62 ◽  
pp. C58-C71
Author(s):  
Markus Hegland ◽  
Frank De Hoog

Positive semi-definite matrices commonly occur as normal matrices of least squares problems in statistics or as kernel matrices in machine learning and approximation theory. They are typically large and dense. Thus algorithms to solve systems with such a matrix can be very costly. A core idea to reduce computational complexity is to approximate the matrix by one with a low rank. The optimal and well understood choice is based on the eigenvalue decomposition of the matrix. Unfortunately, this is computationally very expensive. Cheaper methods are based on Gaussian elimination but they require pivoting. We show how invariant matrix theory provides explicit error formulas for an averaged error based on volume sampling. The formula leads to ratios of elementary symmetric polynomials on the eigenvalues. We discuss several bounds for the expected norm of the approximation error and include examples where this expected error norm can be computed exactly. References A. Dax. “On extremum properties of orthogonal quotients matrices”. In: Lin. Alg. Appl. 432.5 (2010), pp. 1234–1257. doi: 10.1016/j.laa.2009.10.034. M. Dereziński and M. W. Mahoney. Determinantal Point Processes in Randomized Numerical Linear Algebra. 2020. url: https://arxiv.org/abs/2005.03185. A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. “Matrix approximation and projective clustering via volume sampling”. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm. SODA ’06. Miami, Florida: Society for Industrial and Applied Mathematics, 2006, pp. 1117–1126. url: https://dl.acm.org/doi/abs/10.5555/1109557.1109681. S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin. “A theory of pseudoskeleton approximations”. In: Lin. Alg. Appl. 261.1 (1997), pp. 1–21. doi: 10.1016/S0024-3795(96)00301-1. M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved data analysis”. In: Proc. Nat. Acad. Sci. 106.3 (Jan. 20, 2009), pp. 697–702. doi: 10.1073/pnas.0803205106. M. Marcus and L. Lopes. “Inequalities for symmetric functions and Hermitian matrices”. In: Can. J. Math. 9 (1957), pp. 305–312. doi: 10.4153/CJM-1957-037-9.

2015 ◽  
Vol 52 (4) ◽  
pp. 1003-1012 ◽  
Author(s):  
Laurent Decreusefond ◽  
Ian Flint ◽  
Anais Vergne

The Ginibre point process (GPP) is one of the main examples of determinantal point processes on the complex plane. It is a recurring distribution of random matrix theory as well as a useful model in applied mathematics. In this paper we briefly overview the usual methods for the simulation of the GPP. Then we introduce a modified version of the GPP which constitutes a determinantal point process more suited for certain applications, and we detail its simulation. This modified GPP has the property of having a fixed number of points and having its support on a compact subset of the plane. See Decreusefond et al. (2013) for an extended version of this paper.


2015 ◽  
Vol 52 (04) ◽  
pp. 1003-1012 ◽  
Author(s):  
Laurent Decreusefond ◽  
Ian Flint ◽  
Anais Vergne

The Ginibre point process (GPP) is one of the main examples of determinantal point processes on the complex plane. It is a recurring distribution of random matrix theory as well as a useful model in applied mathematics. In this paper we briefly overview the usual methods for the simulation of the GPP. Then we introduce a modified version of the GPP which constitutes a determinantal point process more suited for certain applications, and we detail its simulation. This modified GPP has the property of having a fixed number of points and having its support on a compact subset of the plane. See Decreusefond et al. (2013) for an extended version of this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Wenjun Hu ◽  
Gang Zhang ◽  
Zhongjun Ma ◽  
Binbin Wu

The multiagent system has the advantages of simple structure, strong function, and cost saving, which has received wide attention from different fields. Consensus is the most basic problem in multiagent systems. In this paper, firstly, the problem of partial component consensus in the first-order linear discrete-time multiagent systems with the directed network topology is discussed. Via designing an appropriate pinning control protocol, the corresponding error system is analyzed by using the matrix theory and the partial stability theory. Secondly, a sufficient condition is given to realize partial component consensus in multiagent systems. Finally, the numerical simulations are given to illustrate the theoretical results.


Author(s):  
Stefano Massei

AbstractVarious applications in numerical linear algebra and computer science are related to selecting the $$r\times r$$ r × r submatrix of maximum volume contained in a given matrix $$A\in \mathbb R^{n\times n}$$ A ∈ R n × n . We propose a new greedy algorithm of cost $$\mathcal O(n)$$ O ( n ) , for the case A symmetric positive semidefinite (SPSD) and we discuss its extension to related optimization problems such as the maximum ratio of volumes. In the second part of the paper we prove that any SPSD matrix admits a cross approximation built on a principal submatrix whose approximation error is bounded by $$(r+1)$$ ( r + 1 ) times the error of the best rank r approximation in the nuclear norm. In the spirit of recent work by Cortinovis and Kressner we derive some deterministic algorithms, which are capable to retrieve a quasi optimal cross approximation with cost $$\mathcal O(n^3)$$ O ( n 3 ) .


1998 ◽  
Vol 13 (34) ◽  
pp. 2731-2742 ◽  
Author(s):  
YUTAKA MATSUO

We give a reinterpretation of the matrix theory discussed by Moore, Nekrasov and Shatashivili (MNS) in terms of the second quantized operators which describes the homology class of the Hilbert scheme of points on surfaces. It naturally relates the contribution from each pole to the inner product of orthogonal basis of free boson Fock space. These bases can be related to the eigenfunctions of Calogero–Sutherland (CS) equation and the deformation parameter of MNS is identified with coupling of CS system. We discuss the structure of Virasoro symmetry in this model.


2021 ◽  
Vol 28 (3) ◽  
pp. 234-237
Author(s):  
Gleb D. Stepanov

This article describes an algorithm for obtaining a non-negative basic solution of a system of linear algebraic equations. This problem, which undoubtedly has an independent interest, in particular, is the most time-consuming part of the famous simplex method for solving linear programming problems.Unlike the artificial basis Orden’s method used in the classical simplex method, the proposed algorithm does not attract artificial variables and economically consumes computational resources.The algorithm consists of two stages, each of which is based on Gaussian exceptions. The first stage coincides with the main part of the Gaussian complete exclusion method, in which the matrix of the system is reduced to the form with an identity submatrix. The second stage is an iterative cycle, at each of the iterations of which, according to some rules, a resolving element is selected, and then a Gaussian elimination step is performed, preserving the matrix structure obtained at the first stage. The cycle ends either when the absence of non-negative solutions is established, or when one of them is found.Two rules for choosing a resolving element are given. The more primitive of them allows for ambiguity of choice and does not exclude looping (but in very rare cases). Use of the second rule ensures that there is no looping.


Sign in / Sign up

Export Citation Format

Share Document