scholarly journals ON THE MATRIX THEORY OF CONTINUOUS BEAMS ON ELASTIC FOUNDATION

1953 ◽  
Vol 9 (3) ◽  
pp. 183
Author(s):  
HU HAI-CHANG
2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Wenjun Hu ◽  
Gang Zhang ◽  
Zhongjun Ma ◽  
Binbin Wu

The multiagent system has the advantages of simple structure, strong function, and cost saving, which has received wide attention from different fields. Consensus is the most basic problem in multiagent systems. In this paper, firstly, the problem of partial component consensus in the first-order linear discrete-time multiagent systems with the directed network topology is discussed. Via designing an appropriate pinning control protocol, the corresponding error system is analyzed by using the matrix theory and the partial stability theory. Secondly, a sufficient condition is given to realize partial component consensus in multiagent systems. Finally, the numerical simulations are given to illustrate the theoretical results.


1998 ◽  
Vol 13 (34) ◽  
pp. 2731-2742 ◽  
Author(s):  
YUTAKA MATSUO

We give a reinterpretation of the matrix theory discussed by Moore, Nekrasov and Shatashivili (MNS) in terms of the second quantized operators which describes the homology class of the Hilbert scheme of points on surfaces. It naturally relates the contribution from each pole to the inner product of orthogonal basis of free boson Fock space. These bases can be related to the eigenfunctions of Calogero–Sutherland (CS) equation and the deformation parameter of MNS is identified with coupling of CS system. We discuss the structure of Virasoro symmetry in this model.


1938 ◽  
Vol 5 (2) ◽  
pp. A61-A66
Author(s):  
Winston M. Dudley

Abstract In 1934 two English investigators (1) published a method for calculating the various modes and frequencies of vibration of a system having several degrees of freedom. Their method, which is based on matrices, greatly shortens the time spent in obtaining numerical solutions in many important problems, notably those with immovable foundations. In this paper is presented a new theorem which (a) makes possible a further reduction of nearly one half in the time required, so that solutions up to 20 deg or more of freedom are now practical and (b) makes it then possible to determine the motion of the system after any initial disturbance in a few minutes, instead of several hours as required by older methods. It is useful in the latter respect whether the modes have been determined by matrix methods, or not. Although the paper gives simpler proofs than any previously published, knowledge of the matrix theory is not required in using the method. Problems are analyzed by a tabular process, in which an ordinary computing machine helps greatly. Comments based on computing experience are given. A simple numerical example has been given elsewhere (1).


Sign in / Sign up

Export Citation Format

Share Document