scholarly journals Quantum Theory of EEG with Application to the Single-Trial ERP Analysis

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Dmitriy Melkonian ◽  
◽  

The probabilistic formalism of quantum mechanics is used to quantitatively link the electroencephalogram (EEG) with the underlying microscale activity of cortical neurons. Previous approaches applied methods of classic physics to reconstruct the EEG in terms of explicit physical models of cortical neurons and the volume conductor. However, the multiplicity of cellular processes with extremely intricate mixtures of deterministic and random factors prevented the creation of consistent biophysical parameter sets. To avoid the uncertainty surrounding the physical attributes of the neuronal ensembles, we undertake here a radical departure from deterministic equations of classical physics to the probabilistic reasoning of quantum mechanics. The crucial step is the relocation of the elementary bioelectric sources from cellular to molecular level. Using a novel method of time-frequency analysis with adaptive segmentation for digital processing of empirical EEG and single trial event related potentials (ERPs), we found universal “building blocks” of these cortical processes both in the frequency and time domains. This result is qualified as a phenomenon known in statistical physics and quantum mechanics as universality. Therationale is that despite dramatic differences in the cellular machineries, the statistical factors governed by the central limit theorem produce the EEG waveform as a statistical aggregate of the synchronized activities of large ensembles of closely located cortical neurons. Using these theoretical and empirical findings the probabilistic laws that control the microscale machinery generating the EEG are deduced.

2007 ◽  
Vol 28 (7) ◽  
pp. 602-613 ◽  
Author(s):  
Christian-G. Bénar ◽  
Daniele Schön ◽  
Stephan Grimault ◽  
Bruno Nazarian ◽  
Boris Burle ◽  
...  

2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2021 ◽  
pp. 415-427
Author(s):  
Siyuan Zang ◽  
Changle Zhou ◽  
Fei Chao

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7198
Author(s):  
Juan David Chailloux Peguero ◽  
Omar Mendoza-Montoya ◽  
Javier M. Antelis

The P300 paradigm is one of the most promising techniques for its robustness and reliability in Brain-Computer Interface (BCI) applications, but it is not exempt from shortcomings. The present work studied single-trial classification effectiveness in distinguishing between target and non-target responses considering two conditions of visual stimulation and the variation of the number of symbols presented to the user in a single-option visual frame. In addition, we also investigated the relationship between the classification results of target and non-target events when training and testing the machine-learning model with datasets containing different stimulation conditions and different number of symbols. To this end, we designed a P300 experimental protocol considering, as conditions of stimulation: the color highlighting or the superimposing of a cartoon face and from four to nine options. These experiments were carried out with 19 healthy subjects in 3 sessions. The results showed that the Event-Related Potentials (ERP) responses and the classification accuracy are stronger with cartoon faces as stimulus type and similar irrespective of the amount of options. In addition, the classification performance is reduced when using datasets with different type of stimulus, but it is similar when using datasets with different the number of symbols. These results have a special connotation for the design of systems, in which it is intended to elicit higher levels of evoked potentials and, at the same time, optimize training time.


Sign in / Sign up

Export Citation Format

Share Document