scholarly journals Analysis of Event Related Potentials using PCA and Matching Pursuit on the Time-Frequency Plane

Author(s):  
Selin Aviyente ◽  
Edward M. Bernat ◽  
Stephen M. Malone ◽  
William G. Iacono
2015 ◽  
Vol 27 (5) ◽  
pp. 1017-1028 ◽  
Author(s):  
Paul Metzner ◽  
Titus von der Malsburg ◽  
Shravan Vasishth ◽  
Frank Rösler

Recent research has shown that brain potentials time-locked to fixations in natural reading can be similar to brain potentials recorded during rapid serial visual presentation (RSVP). We attempted two replications of Hagoort, Hald, Bastiaansen, and Petersson [Hagoort, P., Hald, L., Bastiaansen, M., & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science, 304, 438–441, 2004] to determine whether this correspondence also holds for oscillatory brain responses. Hagoort et al. reported an N400 effect and synchronization in the theta and gamma range following world knowledge violations. Our first experiment (n = 32) used RSVP and replicated both the N400 effect in the ERPs and the power increase in the theta range in the time–frequency domain. In the second experiment (n = 49), participants read the same materials freely while their eye movements and their EEG were monitored. First fixation durations, gaze durations, and regression rates were increased, and the ERP showed an N400 effect. An analysis of time–frequency representations showed synchronization in the delta range (1–3 Hz) and desynchronization in the upper alpha range (11–13 Hz) but no theta or gamma effects. The results suggest that oscillatory EEG changes elicited by world knowledge violations are different in natural reading and RSVP. This may reflect differences in how representations are constructed and retrieved from memory in the two presentation modes.


2012 ◽  
Vol 25 (0) ◽  
pp. 192
Author(s):  
Davide Bottari ◽  
Sophie Rohlf ◽  
Marlene Hense ◽  
Boukje Habets ◽  
Brigitte Roeder

Event-related potentials (ERP) to the second stimulus of a pair are known to be reduced in amplitude. The magnitude of this ‘refractoriness’ is modulated by both the interstimulus interval and the similarity between the two stimuli. Intramodal refractoriness is interpreted as an index of a temporary decrement in neural responsiveness. So, cross-modal refractoriness might be an indicator of shared neural generators between modalities. We analysed oscillatory neuronal activity while participants were engaged in an oddball paradigm with auditory (4000 Hz, 50 ms-long, 90 db, bilateral) and tactile stimuli (50 ms-long, 125 Hz-vibrations, index fingers) presented in a random order with an ISI of either 1000 or 2000 ms. Participants were required to detect rare tactile (middle fingers) and auditory deviants (600 Hz). A time–frequency analysis of the brain response to the second stimulus of each pair (T-T, A-A, T-A and A-T) contrasting Short and Long ISIs revealed a reduced refractory effect after Long ISI with respect to Short ISI, in all pairs (both intramodal and cross-modal). This emerged as a broadly distributed increase of evoked theta activity (3–7 Hz, 100–500 ms). Only in intramodal tactile pairs and cross-modal tactile-auditory pairs we also observed that Long ISI with respect to Short ISI determined a decrease of induced alpha (8–12 Hz, 200–700 ms), a typical sign of enhanced neural excitability and thus decreased refractoriness. These data suggest that somatosensory and auditory cortices display different neural markers of refractoriness and that the auditory cortex might have a stronger low level degree of influence on the tactile cortex than vice-versa.


2020 ◽  
Vol 8 (5) ◽  
pp. 872-889 ◽  
Author(s):  
Paige Ethridge ◽  
Nida Ali ◽  
Sarah E. Racine ◽  
Jens C. Pruessner ◽  
Anna Weinberg

Both abnormal stress and reward responsivity are consistently linked to multiple forms of psychopathology; however, the nature of the associations between stress and reward sensitivity remains poorly understood. In the present study, we examined associations between the hypothalamic-pituitary-adrenal-axis stress response and event-related potentials sensitive to the receipt of reward-related feedback in a pre–post experimental paradigm. Neural responses were recorded while male participants completed a simple monetary-reward guessing task before and after the Montreal Imaging Stress Task. Results demonstrated that acute psychosocial stress significantly reduced the magnitude of neural responses to feedback in the reward-sensitive delta-frequency band but not the loss-sensitive theta-frequency band. In addition, a larger delta-frequency response to rewards at baseline predicted reduced overall cortisol response in the stress condition. These findings suggest, therefore, that neural reward circuitry may be associated with both risk for and resilience to stress-related psychopathology.


2017 ◽  
Vol 14 (2) ◽  
pp. 026012 ◽  
Author(s):  
Nelly Richard ◽  
Bettina Laursen ◽  
Morten Grupe ◽  
Asbjørn M Drewes ◽  
Carina Graversen ◽  
...  

2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
M. Constante ◽  
M. Shaikh ◽  
I. Williams ◽  
R. Murray ◽  
E. Bramon

Objective:Abnormalities in event related potentials (ERPs) have long been looked at as markers of disease in Schizophrenia. Over recent years there is a trend in the field to move from averaged trials ERPs analysis in the time-voltage domain, to time-frequency single trials analysis. Oscillations in the Gamma band (30-50Hz) have received particular attention in the context of the theories of core deficits in neuronal synchronization in Schizophrenia. in this study we aimed at replicating previously found Gamma band deficits in a sample of Early Psychosis patients.Methods:EEG was collected from 15 patients and 15 age matched controls using an auditory oddball paradigm. Time-frequency analysis in the Gamma band was performed using a Morlet wavelet transform. We tested differences between the groups using the Wilcoxon rank sum test, given the nonparametric nature of the data, to compare each group's average single trial Gamma power, maximizing the signal-to-noise ratio.Results:Patients with Early Psychosis showed, following target tones, a reduction in the total power of Gamma band activation (p< 0.01) as well as in induced Gamma band activation (p< 0.01). This was observed in a late latency interval at 400-500ms. the late burst of Gamma activity was not found in the frequent condition, for neither subjects group.Conclusion:The findings are compatible with previous studies suggesting deficits in the late intrinsically generated cognitive processing of auditory stimuli in Schizophrenia, already present in its early stage. They add further evidence of deficits in neuronal synchronisation in the early stages of psychotic disorders.


2013 ◽  
Vol 479-480 ◽  
pp. 480-485
Author(s):  
Ming Chung Ho ◽  
Chin Fei Huang ◽  
Chia Yi Chou ◽  
Ming Chi Lu ◽  
Chen Hsieh ◽  
...  

Brain dynamics is an important issue in understanding child development. However, very little research of the event-related responses has been used to explore changes during childhood. The aim of this study was to investigate mature changes in spatiotemporal organization of brain dynamics. We hypothesized that oscillatory event-related brain activity were affected by age-related changes. The sample include three age groups, namely 7 years (N = 18), 11 years (N = 18), and adults (N = 18). The event-related spectral power (ERPSP), and inter-trial phase locking (ITPL) of the event-related potentials (ERPs) were obtained from the time-frequency analysis of the auditory oddball task. Results revealed that: (a) decreased theta power, but alpha power increased with age; (b) the values of ITPL in the theta and alpha bands increased with age. These suggest that ERPSP, and ITPL provide useful indicators of cognitive maturation processes in children aged 7 and 11 years.


Sign in / Sign up

Export Citation Format

Share Document