biophysical parameter
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 27)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Gonzalo D. Maso Talou ◽  
Thiranja P. Babarenda Gamage ◽  
Martyn P. Nash

The onset and progression of pathological heart conditions, such as cardiomyopathy or heart failure, affect its mechanical behaviour due to the remodelling of the myocardial tissues to preserve its functional response. Identification of the constitutive properties of heart tissues could provide useful biomarkers to diagnose and assess the progression of disease. We have previously demonstrated the utility of efficient AI-surrogate models to simulate passive cardiac mechanics. Here, we propose the use of this surrogate model for the identification of myocardial mechanical properties and intra-ventricular pressure by solving an inverse problem with two novel AI-based approaches. Our analysis concluded that: (i) both approaches were robust toward Gaussian noise when the ventricle data for multiple loading conditions were combined; and (ii) estimates of one and two parameters could be obtained in less than 9 and 18 s, respectively. The proposed technique yields a viable option for the translation of cardiac mechanics simulations and biophysical parameter identification methods into the clinic to improve the diagnosis and treatment of heart pathologies. In addition, the proposed estimation techniques are general and can be straightforwardly translated to other applications involving different anatomical structures.


2021 ◽  
Vol 13 (19) ◽  
pp. 3885
Author(s):  
Xinming Zhu ◽  
Xiaoning Song ◽  
Pei Leng ◽  
Xiaotao Li ◽  
Liang Gao ◽  
...  

Land surface temperature (LST) is a crucial biophysical parameter related closely to the land–atmosphere interface. Satellite thermal infrared measurement provides an effective method to derive LST on regional and global scales, but it is very hard to acquire simultaneously high spatiotemporal resolution LST due to its limitation in the sensor design. Recently, many LST downscaling and spatiotemporal image fusion methods have been widely proposed to solve this problem. However, most methods ignored the spatial heterogeneity of LST distribution, and there are inconsistent image textures and LST values over heterogeneous regions. Thus, this study aims to propose one framework to derive high spatiotemporal resolution LSTs in heterogeneous areas by considering the optimal selection of LST predictors, the downscaling of MODIS LST, and the spatiotemporal fusion of Landsat 8 LST. A total of eight periods of MODIS and Landsat 8 data were used to predict the 100-m resolution LST at prediction time tp in Zhangye and Beijing of China. Further, the predicted LST at tp was quantitatively contrasted with the LSTs predicted by the regression-then-fusion strategy, STARFM-based fusion, and random forest-based regression, and was validated with the actual Landsat 8 LST product at tp. Results indicated that the proposed framework performed better in characterizing LST texture than the referenced three methods, and the root mean square error (RMSE) varied from 0.85 K to 2.29 K, and relative RMSE varied from 0.18 K to 0.69 K, where the correlation coefficients were all greater than 0.84. Furthermore, the distribution error analysis indicated the proposed new framework generated the most area proportion at 0~1 K in some heterogeneous regions, especially in artificial impermeable surfaces and bare lands. This means that this framework can provide a set of LST dataset with reasonable accuracy and a high spatiotemporal resolution over heterogeneous areas.


2021 ◽  
Vol 13 (12) ◽  
pp. 2341
Author(s):  
Qifei Zhang ◽  
Zhifeng Wu ◽  
Paolo Tarolli

Urban green infrastructures (UGI) can effectively reduce surface runoff, thereby alleviating the pressure of urban waterlogging. Due to the shortage of land resources in metropolitan areas, it is necessary to understand how to utilize the limited UGI area to maximize the waterlogging mitigation function. Less attention, however, has been paid to investigating the threshold level of waterlogging mitigation capacity. Additionally, various studies mainly focused on the individual effects of UGI factors on waterlogging but neglected the interactive effects between these factors. To overcome this limitation, two waterlogging high-risk coastal cities—Guangzhou and Shenzhen, are selected to examine the effectiveness and stability of UGI in alleviating urban waterlogging. The results indicate that the impact of green infrastructure on urban waterlogging largely depends on its area and biophysical parameter. Healthier or denser vegetation (superior ecological environment) can more effectively intercept and store rainwater runoff. This suggests that while increasing the area of UGI, more attention should be paid to the biophysical parameter of vegetation. Hence, the mitigation effect of green infrastructure would be improved from the “size” and “health”. The interaction of composition and spatial configuration greatly enhances their individual effects on waterlogging. This result underscores the importance of the interactive enhancement effect between UGI composition and spatial configuration. Therefore, it is particularly important to optimize the UGI composition and spatial pattern under limited land resource conditions. Lastly, the effect of green infrastructure on waterlogging presents a threshold phenomenon. The excessive area proportions of UGI within the watershed unit or an oversized UGI patch may lead to a waste of its mitigation effect. Therefore, the area proportion of UGI and its mitigation effect should be considered comprehensively when planning UGI. It is recommended to control the proportion of green infrastructure at the watershed scale (24.4% and 72.1% for Guangzhou and Shenzhen) as well as the area of green infrastructure patches (1.9 ha and 2.8 ha for Guangzhou and Shenzhen) within the threshold level to maximize its mitigation effect. Given the growing concerns of global warming and continued rapid urbanization, these findings provide practical urban waterlogging prevention strategies toward practical implementations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0246496
Author(s):  
Samuel Sofela ◽  
Sarah Sahloul ◽  
Yong-Ak Song

Caenorhabditis elegans has emerged as a powerful model organism for drug screening due to its cellular simplicity, genetic amenability and homology to humans combined with its small size and low cost. Currently, high-throughput drug screening assays are mostly based on image-based phenotyping with the focus on morphological-descriptive traits not exploiting key locomotory parameters of this multicellular model with muscles such as its thrashing force, a critical biophysical parameter when screening drugs for muscle-related diseases. In this study, we demonstrated the use of a micropillar-based force assay chip in combination with a fluorescence assay to evaluate the efficacy of various drugs currently used in treatment of neurodegenerative and neuromuscular diseases. Using this two-dimensional approach, we showed that the force assay was generally more sensitive in measuring efficacy of drug treatment in Duchenne Muscular Dystrophy and Parkinson’s Disease mutant worms as well as partly in Amyotrophic Lateral Sclerosis model. These results underline the potential of our force assay chip in screening of potential drug candidates for the treatment of neurodegenerative and neuromuscular diseases when combined with a fluorescence assay in a two-dimensional analysis approach.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2162
Author(s):  
Mohammad Mamouei ◽  
Subhasri Chatterjee ◽  
Meysam Razban ◽  
Meha Qassem ◽  
Panayiotis A. Kyriacou

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs. They also do not permit continuous and non-invasive monitoring of dermal water content, which can be beneficial for various consumer, clinical, and cosmetic purposes. We report here on the design and development of a digital multi-wavelength optical sensor that performs continuous and non-invasive measurement of dermal water content. In silico investigation on porcine skin was carried out using the Monte Carlo modeling strategy to evaluate the feasibility and characterize the sensor. Subsequently, an in vitro experiment was carried out to evaluate the performance of the sensor and benchmark its accuracy against a high-end, broad band spectrophotometer. Reference measurements were made against gravimetric analysis. The results demonstrate that the developed sensor can deliver accurate, continuous, and non-invasive measurement of skin hydration through measurement of dermal water content. Remarkably, the novel design of the sensor exceeded the performance of the high-end spectrophotometer due to the important denoising effects of temporal averaging. The authors believe, in addition to wellbeing and skin health monitoring, the designed sensor can particularly facilitate disease management in patients presenting diabetes mellitus, hypothyroidism, malnutrition, and atopic dermatitis.


Author(s):  
Mohammd Mamouei ◽  
Subhasri Chatterjee ◽  
Meysam Razban ◽  
Meha Qassem ◽  
Panayiotis A. Kyriacou

Dermal water content is an important biophysical parameter in preserving skin integrity and preventing skin damage. Traditional electrical-based and open-chamber evaporimeters have several well-known limitations. In particular, such devices are costly, sizeable, and only provide arbitrary outputs. They also do not permit continuous and non-invasive monitoring of dermal water content, which can be beneficial for various consumer, clinical and cosmetic purposes. We report here on the design and development of a digital multi-wavelength optical sensor that performs continuous and non-invasive measurement of dermal water content. In-silico investigation on porcine skin was carried out using the Monte Carlo modelling strategy to evaluate the feasibility and characterise the sensor. Subsequently, an in-vitro experiment was carried out to evaluate the performance of the sensor and benchmark its accuracy against a high-end, broad band spectrophotometer. Reference measurements were made against gravimetric analysis. The results demonstrate that the developed sensor can deliver accurate, continuous, and non-invasive measurement of skin hydration through measurement of dermal water content. Remarkably, the novel design of the sensor exceeded the performance of the high-end spectrophotometer due to the important denoising effects of temporal averaging. The authors believe, in addition to wellbeing and skin health monitoring, the designed sensor can particularly facilitate disease management in patients presenting diabetes mellitus, hypothyroidism, malnutrition, and atopic dermatitis.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Dmitriy Melkonian ◽  
◽  

The probabilistic formalism of quantum mechanics is used to quantitatively link the electroencephalogram (EEG) with the underlying microscale activity of cortical neurons. Previous approaches applied methods of classic physics to reconstruct the EEG in terms of explicit physical models of cortical neurons and the volume conductor. However, the multiplicity of cellular processes with extremely intricate mixtures of deterministic and random factors prevented the creation of consistent biophysical parameter sets. To avoid the uncertainty surrounding the physical attributes of the neuronal ensembles, we undertake here a radical departure from deterministic equations of classical physics to the probabilistic reasoning of quantum mechanics. The crucial step is the relocation of the elementary bioelectric sources from cellular to molecular level. Using a novel method of time-frequency analysis with adaptive segmentation for digital processing of empirical EEG and single trial event related potentials (ERPs), we found universal “building blocks” of these cortical processes both in the frequency and time domains. This result is qualified as a phenomenon known in statistical physics and quantum mechanics as universality. Therationale is that despite dramatic differences in the cellular machineries, the statistical factors governed by the central limit theorem produce the EEG waveform as a statistical aggregate of the synchronized activities of large ensembles of closely located cortical neurons. Using these theoretical and empirical findings the probabilistic laws that control the microscale machinery generating the EEG are deduced.


Author(s):  
Carina Danchik ◽  
Arturo Casadevall

Cell surface hydrophobicity (CSH) is an important cellular biophysical parameter which affects both cell-cell and cell-surface interactions. In dimorphic fungi, multiple factors including the temperature-induced shift between mold and yeast forms have strong effects on CSH with higher hydrophobicity more common at the lower temperatures conducive to filamentous cell growth. Some strains of Cryptococcus neoformans exhibit high CSH despite the presence of the hydrophilic capsule. Among individual yeast colonies from the same isolate, distinct morphologies can correspond to differences in CSH. These differences in CSH are frequently associated with altered virulence in medically-significant fungi and can impact the efficacy of antifungal therapies. The mechanisms for the maintenance of CSH in pathogenic fungi remain poorly understood, but an appreciation of this fundamental cellular parameter is important for understanding its contributions to such phenomena as biofilm formation and virulence.


Sign in / Sign up

Export Citation Format

Share Document