scholarly journals Analyses of Original and Computationally-Derived Electronic Health Record Data: The National COVID Cohort Collaborative (Preprint)

2021 ◽  
Author(s):  
Randi Foraker ◽  
Aixia Guo ◽  
Jason Thomas ◽  
Noa Zamstein ◽  
Philip R.O. Payne ◽  
...  

BACKGROUND Background: Synthetic data can be used by collaborators to generate and share data in support of answering critical research questions to address the COVID-19 pandemic. Computationally-derived (“synthetic”) data can enable the creation and analysis of clinical, laboratory, and diagnostic data as if they were the original electronic health record (EHR) data. OBJECTIVE Objectives: To compare the results of analyses using synthetic derivatives to analyses using the original data downloaded from a big-data platform with data-synthesizing capabilities (MDClone Ltd., Beer Sheva, Israel) to assess the strengths and limitations of leveraging computationally-derived data for research purposes. METHODS Methods: We used the National COVID Cohort Collaborative’s (N3C) instance of MDClone, comprising EHR data from 34 N3C institutional partners. We tested three use cases, including (1) exploring the distributions of key features of the COVID-positive cohort; (2) training and testing predictive models for assessing the risk of admission among these patients; and (3) determining geospatial and temporal COVID-related measures and outcomes, and constructing their respective epidemic curves. We compared the results of analyses using synthetic derivatives to analyses using the original data using traditional statistics, machine learning approaches, temporal and spatial representations of the data. RESULTS Results: For each use case, the results of the synthetic data analyses successfully mimicked those of the original data such that the distributions of the data were similar and the predictive models demonstrated comparable performance. While the synthetic and original data yielded overall nearly the same results, there were exceptions which included an odds ratio on either side of the null in multivariable analyses (0.97 versus 1.01) and epidemic curves constructed for zip codes with low population counts. CONCLUSIONS Discussion & Conclusion: This paper presents the results of each use case and outlines key considerations for the use of synthetic data, examining their role in collaborative research for faster insights. CLINICALTRIAL N/A

2011 ◽  
Vol 4 (0) ◽  
Author(s):  
Michael Klompas ◽  
Chaim Kirby ◽  
Jason McVetta ◽  
Paul Oppedisano ◽  
John Brownstein ◽  
...  

Author(s):  
José Carlos Ferrão ◽  
Mónica Duarte Oliveira ◽  
Daniel Gartner ◽  
Filipe Janela ◽  
Henrique M. G. Martins

Author(s):  
Jeffrey G Klann ◽  
Griffin M Weber ◽  
Hossein Estiri ◽  
Bertrand Moal ◽  
Paul Avillach ◽  
...  

Abstract Introduction The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing COVID-19 with federated analyses of electronic health record (EHR) data. Objective We sought to develop and validate a computable phenotype for COVID-19 severity. Methods Twelve 4CE sites participated. First we developed an EHR-based severity phenotype consisting of six code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also piloted an alternative machine-learning approach and compared selected predictors of severity to the 4CE phenotype at one site. Results The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability - up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean AUC 0.903 (95% CI: 0.886, 0.921), compared to AUC 0.956 (95% CI: 0.952, 0.959) for the machine-learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared to chart review. Discussion We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine-learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly due to heterogeneous pandemic conditions. Conclusion We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


2020 ◽  
Vol 41 (S1) ◽  
pp. s39-s39
Author(s):  
Pontus Naucler ◽  
Suzanne D. van der Werff ◽  
John Valik ◽  
Logan Ward ◽  
Anders Ternhag ◽  
...  

Background: Healthcare-associated infection (HAI) surveillance is essential for most infection prevention programs and continuous epidemiological data can be used to inform healthcare personal, allocate resources, and evaluate interventions to prevent HAIs. Many HAI surveillance systems today are based on time-consuming and resource-intensive manual reviews of patient records. The objective of HAI-proactive, a Swedish triple-helix innovation project, is to develop and implement a fully automated HAI surveillance system based on electronic health record data. Furthermore, the project aims to develop machine-learning–based screening algorithms for early prediction of HAI at the individual patient level. Methods: The project is performed with support from Sweden’s Innovation Agency in collaboration among academic, health, and industry partners. Development of rule-based and machine-learning algorithms is performed within a research database, which consists of all electronic health record data from patients admitted to the Karolinska University Hospital. Natural language processing is used for processing free-text medical notes. To validate algorithm performance, manual annotation was performed based on international HAI definitions from the European Center for Disease Prevention and Control, Centers for Disease Control and Prevention, and Sepsis-3 criteria. Currently, the project is building a platform for real-time data access to implement the algorithms within Region Stockholm. Results: The project has developed a rule-based surveillance algorithm for sepsis that continuously monitors patients admitted to the hospital, with a sensitivity of 0.89 (95% CI, 0.85–0.93), a specificity of 0.99 (0.98–0.99), a positive predictive value of 0.88 (0.83–0.93), and a negative predictive value of 0.99 (0.98–0.99). The healthcare-associated urinary tract infection surveillance algorithm, which is based on free-text analysis and negations to define symptoms, had a sensitivity of 0.73 (0.66–0.80) and a positive predictive value of 0.68 (0.61–0.75). The sensitivity and positive predictive value of an algorithm based on significant bacterial growth in urine culture only was 0.99 (0.97–1.00) and 0.39 (0.34–0.44), respectively. The surveillance system detected differences in incidences between hospital wards and over time. Development of surveillance algorithms for pneumonia, catheter-related infections and Clostridioides difficile infections, as well as machine-learning–based models for early prediction, is ongoing. We intend to present results from all algorithms. Conclusions: With access to electronic health record data, we have shown that it is feasible to develop a fully automated HAI surveillance system based on algorithms using both structured data and free text for the main healthcare-associated infections.Funding: Sweden’s Innovation Agency and Stockholm County CouncilDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document