Direct Numerical Simulation of Mass Transfer from Spherical Bubbles: the Effect of Interface Contamination at Low Reynolds Numbers

Author(s):  
Adil Dani ◽  
Arnaud Cockx ◽  
Pascal Guiraud

The gas-liquid mass transfer from bubbles is estimated by Direct Numerical Simulation for fully contaminated bubbles behaving as solid spheres, partially contaminated spherical bubbles and clean spherical bubbles. Partial contamination of bubble interface is accounted by the Stagnant Cap Model to show the effect of the surfactant on hydrodynamic and mass transfer at low Reynolds number. Hydrodynamics results are validated by comparison with other works of the literature. The numerical mass transfer is then analysed in term of local and averaged Sherwood numbers. The comparison of DNS results with classical relations gives the good scaling of Sherwood with Pe1/3 and Pe1/2 respectively for solid sphere and clean bubble in creeping flow. For partially contaminated bubble and after validation of simulated drag coefficient, the effect of the contamination on mass transfer is shown for several Peclet numbers. A correlation for Sherwood number in function of contamination angle is then proposed in creeping flow.

2021 ◽  
Vol 33 (11) ◽  
pp. 113309
Author(s):  
Lingxin Zhang ◽  
Kai Peng ◽  
Xueming Shao ◽  
Jian Deng

2022 ◽  
Vol 933 ◽  
Author(s):  
Michele Pinelli ◽  
H. Herlina ◽  
J.G. Wissink ◽  
M. Uhlmann

We present direct numerical simulation results of turbulent open channel flow at bulk Reynolds numbers up to 12 000, coupled with (passive) scalar transport at Schmidt numbers up to 200. Care is taken to capture the very large-scale motions which appear already for relatively modest Reynolds numbers. The transfer velocity at the flat, free surface is found to scale with the Schmidt number to the power ‘ $-1/2$ ’, in accordance with previous studies and theoretical predictions for uncontaminated surfaces. The scaling of the transfer velocity with Reynolds number is found to vary, depending on the Reynolds number definition used. To compare the present results with those obtained in other systems, we define a turbulent Reynolds number at the edge of the surface-influenced layer. This allows us to probe the two-regime model of Theofanous et al. (Intl J. Heat Mass Transfer, vol. 19, 1976, pp. 613–624), which is found to correctly predict that small-scale vortices significantly affect the mass transfer for turbulent Reynolds numbers larger than 500. It is further established that the root mean square of the surface divergence is, on average, proportional to the mean transfer velocity. However, the spatial correlation between instantaneous surface divergence and transfer velocity tends to decrease with increasing Schmidt number and increase with increasing Reynolds number. The latter is shown to be caused by an enhancement of the correlation in high-speed regions, which in turn is linked to the spatial distribution of surface-parallel vortices.


2021 ◽  
Vol 1877 (1) ◽  
pp. 012035
Author(s):  
Shengxiang Lin ◽  
Huanxiong Xia ◽  
Zhenyu Zhang ◽  
Jianhua Liu ◽  
Honglei Wang

Sign in / Sign up

Export Citation Format

Share Document